Vol. 100
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-10-15
High Gain and Wide Bandwidth Array Antenna for Sector Beam Pattern Synthesis
By
Progress In Electromagnetics Research Letters, Vol. 100, 109-116, 2021
Abstract
This paper presents a novel design structure of a series fed array antenna for desired shaped beam pattern synthesis. The desired beam shape is obtained by varying the width of patch elements. A uniform array is designed for the desired frequency, and then the proportionate values of the widths are calculated using amplitude coefficients obtained from the Woodward Lawson array synthesis method, while keeping excitation phase and inter element spacing constant. The proposed antenna is designed and simulated in HFSS. A prototype is fabricated on FR-4 epoxy dielectric material and tested at 12.5 GHz. The overall antenna has a compact size of 112 mm x 34 mm x 0.8 mm. The array structure exhibits impedance bandwidth of 1.8 GHz from 11 GHz to 12.8 GHz frequency range with return loss of -27.1 dB and high gain 14.2 dBi. The series fed configuration results in a VSWR of 1.38 and considerably low side lobe level of -24 dB in H-plane. There is a fine similarity between simulation and fabrication measurement parameter values such as return loss, VSWR, gain, and bandwidth.
Citation
Ayyadevara Murali Maruti, and Bhavan S. Naga Kishore, "High Gain and Wide Bandwidth Array Antenna for Sector Beam Pattern Synthesis," Progress In Electromagnetics Research Letters, Vol. 100, 109-116, 2021.
doi:10.2528/PIERL21081304
References

1. Chu, H., P. Li, and Y.-X. Guo, "A beam-shaping feeding network in series con guration for antenna array with cosecant-square pattern and low side lobe," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 742-746, 2019.
doi:10.1109/LAWP.2019.2901948

2. Chen, J.-Y. and J.-S. Row, "Frequency recon gurable antennawith conical radiation pattern and wide tuning range," Progress In Electromagnetics Research Letters, Vol. 96, 147-152, 2021.
doi:10.2528/PIERL21020602

3. Akdagli, F. Guney, "Shaped-beam pattern synthesis of equally and unequally spaced linear antenna arrays using modi ed tabusearch algorithm," Microw. Opt. Technol. Lett., No. 1, 16-20, 2003.
doi:10.1002/mop.10657

4. Kurup, D. G., M. Himdi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2210-2217, 2003.
doi:10.1109/TAP.2003.816361

5. Marcono, D. and F. Duran, "Synthesis of antenna arrays using genetic algorithms," IEEE Antennas and Propagation Mag., Vol. 42, No. 3, 12-22, 2000.
doi:10.1109/74.848944

6. Guo, J.-L. and J.-Y. Li, "Pattern synthesis of conformal array antenna in the presence of platform using differential evolution algorithm," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2615-2621, 2009.
doi:10.1109/TAP.2009.2027046

7. Buonanno, G. and R. Solimene, "Study of unequally-excited random antenna arrays for beam shaping," Progress In Electromagnetics Research C, Vol. 85, 129-140, 2018.
doi:10.2528/PIERC18052904

8. Yuan, T., N. Yuan, and L.-W. Li, "A novel series-fed taper antenna array design," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 362-365, 2008.
doi:10.1109/LAWP.2008.928487

9. Chen, Z. and S. Otto, "A taper optimization for pattern synthesis of microstrip series-fed patch array antennas," Proc. 2nd European Wireless Technology Conference, 160-163, 2000.

10. Singh, B., N. Sarwade, and K. P. Ray, "Compact series fed tapered antenna array using unequal rectangular microstrip antenna elements," Microw. Opt. Technol. Lett., Vol. 59, No. 8, 1856-1861, 2017.
doi:10.1002/mop.30640

11. Diawuo, H. A., S. J. Lee, and Y.-B. Jung, "Side lobe level reduction of a linear array using two amplitude tapering techniques," IET Microwaves, Antennas and Propagation, Vol. 11, 1432-437, 2017.
doi:10.1049/iet-map.2016.0883

12. Rajendran, S. and M. Thiyagarajan, "Performance comparison of S-band antenna with series fed and corporate fed microstrip array," International Journal of Engineering and Technology, Vol. 7, 1036-1039, 2018.

13. Maddio, S., G. Pelosi, M. Righini, and S. Selleri, "A slotted patch antenna with enhanced gain pattern for automotive applications," Progress In Electromagnetic Research Letters, Vol. 95, 135-141, 2021.
doi:10.2528/PIERL20110103

14. Metzler, T., "Microstrip series arrays," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 174-178, 1981.
doi:10.1109/TAP.1981.1142543

15. Chopra, R. and G. Kumar, "Series-and corner-fed planar microstrip antenna arrays," IEEE Trans. Antennas Propag., Vol. 67, 5982-5990, 2019.
doi:10.1109/TAP.2019.2922774

16. Shirkolaei, M. M., "High efficiency X-band series-fed microstrip array antenna," Progress In Electromagnetic Research C, Vol. 105, 35-45, 2020.
doi:10.2528/PIERC20061003

17. Chopra, R. and G. Kumar, "Series-fed binomial microstrip arrays for extremely low side lobe level," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 4275-4279, 2019.
doi:10.1109/TAP.2019.2908108

18. Bhattacharyya, A., D. Yang, and S. Nam, "Microstrip array antenna bandwidth enhancement using reactive surface," Microw. Opt. Technol. Lett., Vol. 62, 825-829, 2020.
doi:10.1002/mop.32081

19. Fondevila-Gomex, J., J. A. Rodriguex, F. Ares, and E. Moreno, "A simple way of obtaining optimized patterns using the Woodward-Lawson method," 2006 IEEE International Symposium, 3383-3386, 2006.

20. Morabito, A. F., A. R. Lagana, and T. Isernia, "Optimizing power transmission in given target areas in the presence of protection requirements," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 44-47, 2015.
doi:10.1109/LAWP.2014.2354514