Vol. 100
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-10-29
Near Field RFID Tag for IoT in Sub-Six GHz Band
By
Progress In Electromagnetics Research Letters, Vol. 100, 169-175, 2021
Abstract
The present paper introduces the analysis and design of a near field RFID tag for IoT in sub-six GHz 5G frequency band. The proposed radio frequency identification technique is based on the near field interaction between the RFID tag and a wideband antenna reader. This near field interaction adjusts the resonances of the wideband antenna according to the used RFID tag. In addition, the far field RCS of the RFID tag is also investigated to study the relation between the near field and the far field responses of the proposed RFID tag. The proposed RFID tag is characterized with adjustable six resonances based on concentric square rings printed on a dielectric slab. For manufacturing and experimental verification, the dielectric slab is assumed to be FR-4. However, the proposed structure can be generalized to other thin and flexible substrates like paper, plastic and textile.
Citation
Walaa Hassan, Tamer M. Ali, and Ahmed Attiya, "Near Field RFID Tag for IoT in Sub-Six GHz Band," Progress In Electromagnetics Research Letters, Vol. 100, 169-175, 2021.
doi:10.2528/PIERL21081901
References

1. Finkenzeller, K., RFID Handbook, 2nd Edition, John Wiley & Sons, Ltd., 2003.
doi:10.1002/0470868023

2. Ersoz, S., A. F. Inal, A. Aktepe, and A. K. Turker, "A literature review on RFID applications in advanced manufacturing systems," International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES'18), 11-13, Safranbolu, Turkey, May 2018.

3. Kamran, A., H. Shah, and P. Kingston, "RFID applications: An introductory and exploratory study," IJCSI International Journal of Computer Science Issues, Vol. 7, No. 1, 1-7, January 2010.

4. Parkash, D., T. Kundu, and P. Kaur, "The RFID technology and its applications: A review," International Journal of Electronics, Communication & Instrumentation Engineering Research and Development, 111-113, 2012.

5. Alyahya, S., Q. Wang, and N. Bennett, "Application and integration of an RFID-enabled warehousing management system --- A feasibility study," Journal of Industrial Information Integration, Vol. 4, 15-25, 2016.
doi:10.1016/j.jii.2016.08.001

6. Eldefrawy, M. H. and M. K. Khan, "Banknote validation through an embedded RFID chip and an NFC-enabled smartphone," Mathematical Problems in Engineering, Vol. 2015, Article ID 264514, 8 pages, Hindawi Publishing Corporation, 2015.

7. Vena, A., E. Perret, S. Tedjini, G. Eymin, P. Tourtollet, A. Delattre, F. Garet, and Y. Boutant, "Design of chipless RFID tags printed on paper by flexography," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 5868-5877, 2013.
doi:10.1109/TAP.2013.2281742

8. Herrojo, C., M. Moras, F. Paredes, A. Nunez, E. Ramon, J. Mata-Contreras, and F. Martin, "Very low-cost 80-bit chipless-RFID tags inkjet printed on ordinary paper," Technologies, Vol. 6, No. 2, 52, 2018.
doi:10.3390/technologies6020052

9. Waris, B., L. Ukkonen, J. Virkki, and T. Bjorninen, "Wearable passive UHF RFID tag based on a split ring antenna," IEEE Radio and Wireless Symposium (RWS), 2017.

10. Lopez-Soriano, S. and J. Parron, "Wearable RFID tag antenna for healthcare applications," IEEE- APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 7-11, Turin, Italy, October 2015.

11. Jabeen, I., A. Ejaz, S. M. Kabir, A. Akram, Y. Amin, and H. Tenhunen, "Octagonal shaped flexible chipless RFID tag for Internet of Things," International Conference on Electrical, Communication, and Computer Engineering (ICECCE), 1-4, 2019.

12. Boularess, O., L. Ladhar, A. Affandi, and S. Tedjini, "Analysis of RCS signatures of chipless RFID tags based on Arabic alphabet letters with punctuation," Applied Computational Electromagnetics Society Journal, Vol. 34, No. 5, 2019.

13. Sharma, V., S. Malhotra, and M. Hashmi, "Slot resonator based novel orientation independent chipless RFID tag configurations," IEEE Sensors Journal, Vol. 19, No. 13, 5153-5160, 2019.
doi:10.1109/JSEN.2019.2902622

14. Preradovic, S., I. Balbin, N. C. Karmakar, and G. Swiegers, "A novel chipless RFID system based on planar multiresonators for barcode replacement," IEEE International Conference on RFID, The Venetian, Las Vegas, Nevada, USA, April 2008.

15. Laila, D., R. Thomas, C. Nijas, and P. Mohanan, "A novel polarization independent chipless RFID tag using multiple resonators," Progress In Electromagnetics Research Letters, Vol. 55, 61-66, 2015.
doi:10.2528/PIERL15061004

16. Karmakar, N. C., R. Koswatta, P. Kalansuriya, and E. Rubayet, Chipless RFID Reader Architecture, Artech House, 2013.

17. Karmakar, N. C., E. Md Amin, and J. K. Saha, Chipless RFID Sensors, John Wiley & Sons, 2016.

18. Jang, H. S., W. G. Lim, K. S. Oh, S. M. Moon, and J. W. Yu, "Design of low-cost chipless system using printable chipless tag with electromagnetic code," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 11, 640-642, 2010.
doi:10.1109/LMWC.2010.2073692

19. Marindra, A. M. J. and G. Y. Tian, "Chipless RFID sensor for corrosion characterization based on frequency selective surface and feature fusion," Smart Materials and Structures, Vol. 29, No. 12, 125010, 2020.
doi:10.1088/1361-665X/abbff4

20. Marindra, A. M. J. and G. Y. Tian, "Multiresonance chipless RFID sensor tag for metal defect characterization using principal component analysis," IEEE Sensors Journal, Vol. 19, No. 18, 8037-8046, 2019.
doi:10.1109/JSEN.2019.2917840