Vol. 94
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-10-17
Electromagnetic Boundary Conditions Defined by Reflection Properties of Eigen Plane Waves
By
Progress In Electromagnetics Research B, Vol. 94, 37-52,
Abstract
In a previous study [1] it was shown that the generalized soft-and-hard/DB (GSHDB) boundary has the unique property that the two eigen plane waves are reflected as from the PEC or PMC boundary, i.e., with reflection coefficients -1 or +1, for any angle of incidence. The present paper discusses a more general class of boundaries by requiring that the reflection coefficients R+ and R-, corresponding to the two eigen plane waves, have opposite values, R±R with R independent of the angle of incidence. It turns out that there are two possibilities, R=1 for the class of GSHDB boundaries, and R=j, defining an extension of the class of perfect electromagnetic conductor (PEMC) boundaries. Matched waves at, and plane-waves reflected from, boundaries of the latter class are studied in the paper.
Citation
Ismo Veikko Lindell, and Ari Sihvola, "Electromagnetic Boundary Conditions Defined by Reflection Properties of Eigen Plane Waves," Progress In Electromagnetics Research B, Vol. 94, 37-52, .
doi:10.2528/PIERB21082106
References

1. Lindell, I. V. and A. Sihvola, "Electromagnetic boundaries with PEC/PMC equivalence," Progress In Electromagnetics Research Letters, Vol. 61, 119-123, 2016.
doi:10.2528/PIERL16061805

2. Lindell, I. V. and A. Sihvola, "Boundary Conditions in Electromagnetics," Wiley and IEEE Press, 2020.

3. Hoppe, D. J. and Y. Rahmat-Samii, Impedance Boundary Conditions in Electromagnetics, Taylor & Francis, 1995.

4. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE, 1995.
doi:10.1049/PBEW041E

5. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

6. Fong, B. H., J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, "Scalar and tensor holographic artificial impedance surfaces," IEEE Trans. Antennas Propag., Vol. 58, No. 10, 3212-3221, Oct. 2010.
doi:10.1109/TAP.2010.2055812

7. Kildal, P.-S., "Artificially soft and hard surfaces in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 38, No. 10, 1537-1544, Oct. 1990.
doi:10.1109/8.59765

8. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas Propag. Mag., Vol. 54, No. 2, 10-35, Apr. 2012.
doi:10.1109/MAP.2012.6230714

9. Munk, B., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770

10. Maci, S. and A. Cucini, "FSS-based EBG metasurfaces," Metamaterials: Physics and Engineering Explorations, ed., N. Engheta and R. Ziolkowski, IEEE, Piscataway, NJ, 2006.

11. Gok, G. and A. Grbic, "Tailoring the phase and power flow of electromagnetic fields," Phys. Rev. Lett., Vol. 111, 233904, 2013.
doi:10.1103/PhysRevLett.111.233904

12. Lavigne, G. and C. Caloz, "Magnetless reflective gyrotropic spatial isolator metasurface," New Journal of Physics, Vol. 23, No. 7, 1-11, Jul. 2021.

13. Monticone, F., C. A. Valagiannopoulos, and A. Alu, "Aberration-free imaging based on parity-time symmetric nonlocal metasurfaces," Phys. Rev. X, Vol. 6, 041018, 2016.

14. Kildishev, A. V., A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces," Science, Vol. 339, 1232009, 2013.
doi:10.1126/science.1232009

15. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nature Mater., Vol. 13, 13950, 2014.

16. Lindell, I. V. and A. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

17. Shahvarpour, A., T. Kodera, A. Parsa, and C. Caloz, "Arbitrary electromagnetic conductor boundaries using Faraday rotation in a grounded ferrite slab," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 11, 2781-2793, 2010.
doi:10.1109/TMTT.2010.2078010

18. Lindell, I. V. and A. Sihvola, "Electromagnetic wave re ection from boundaries defined by general linear and local conditions," IEEE Trans. Antennas Propag., Vol. 65, No. 9, 4656-4663, 2017.
doi:10.1109/TAP.2017.2723913

19. Lindell, I. V. and A. Sihvola, "Transformation method for problems involving Perfect Electromagnetic Conductor (PEMC) structures," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 3012-3018, 2005.
doi:10.1109/TAP.2005.854524

20. Lindell, I. V. and A. Sihvola, "Generalization of perfect electromagnetic conductor boundary," IEEE Trans. Antennas Propag., Vol. 68, No. 11, 7406-7413, 2020.
doi:10.1109/TAP.2020.2996780

21. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary condition and its realization with anisotropic metamaterial," Phys. Rev. E, Vol. 79, No. 2, 026604 (, 2009.
doi:10.1103/PhysRevE.79.026604

22. Kildal, P.-S., "Definition of artificially soft and hard surfaces for electromagnetic waves," Electron. Lett., Vol. 24, 168-170, 1988.
doi:10.1049/el:19880112

23. Lindell, I. V., "Generalized soft-and-hard surface," IEEE Trans. Antennas Propag., Vol. 50, No. 7, 926-929, Jul. 2002.
doi:10.1109/TAP.2002.800698

24. Lindell, I. V. and A. Sihvola, "Soft-and-hard/DB boundary conditions realized by a skewon-axion medium," Trans. IEEE Antennas Propag., Vol. 61, No. 2, 768-774, 2013.
doi:10.1109/TAP.2012.2223445

25. Lindell, I. V. and A. Sihvola, "Generalized soft-and-hard/DB boundary," Trans. IEEE Antennas Propag., Vol. 65, No. 1, 226-233, 2017.
doi:10.1109/TAP.2016.2628360

26. Lindell, I. V., Methods in Electromagnetic Field Analysis, 2nd Ed., Wiley, 1995.