Vol. 93
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-11-03
Theory of Gaussian Beam Diffraction by a Transmission Dielectric Grating
By
Progress In Electromagnetics Research B, Vol. 93, 195-213, 2021
Abstract
An advanced 2D mode theory of plane electromagnetic wave diffraction by a transmission dielectric grating (rectangular relief or planar sinusoidal one) is considered. On the bases of this theory, a new model of diffraction of a spatially inhomogeneous light field (a Gaussian beam) by a transmission grating with arbitrary thickness is developed. It provides the opportunity to compute the transverse spatial structure of radiation diffraction orders and to estimate character of their distortions in comparison with the initial Gaussian beam structure. It is shown that such distortions appear under abrupt variations of intensity of all orders and can be caused by transformation of a certain diffraction order from the radiation regime of propagation into the waveguide regime and inversely (Wood's anomalies), and also it can be induced by a set of additional reflections on the boundaries of a thick substrate.
Citation
Vladimir Serdyuk, "Theory of Gaussian Beam Diffraction by a Transmission Dielectric Grating," Progress In Electromagnetics Research B, Vol. 93, 195-213, 2021.
doi:10.2528/PIERB21090105
References

1. Elachi, C., "Waves in active and passive periodic structures: A review," Proc. IEEE, Vol. 64, No. 12, 1666-1698, 1976.
doi:10.1109/PROC.1976.10409

2. Gaylord, T. K. and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE, Vol. 73, No. 5, 894-937, 1985.
doi:10.1109/PROC.1985.13220

3. Petit, R., Electromagnetic Theory of Gratings, Springer, New York, 1980.
doi:10.1007/978-3-642-81500-3

4. Belyakov, V. A., Diffraction Optics of Complex-structured Periodic Media, Springer, New York, 1992.
doi:10.1007/978-1-4612-4396-0

5. Rashid, I., H. Butt, A. K. Yetisen, B. Dlubak, J. E. Davies, P. Seneor, A. Vechhiola, F. Bouamrane, and S. Xavier, "Wavelength-selective diffraction from silica thin-film gratings," ACS Photonics, Vol. 4, No. 10, 2402-2409, 2017.
doi:10.1021/acsphotonics.7b00419

6. Shi, J., V. Hsiao, and T. Huang, "Nanoporous polymeric transmission gratings for high-speed humidity sensing," Nanotechnology, Vol. 18, No. 46, 465501 (6pp), 2007.
doi:10.1088/0957-4484/18/46/465501

7. Halir, R., D. Benedicovic, A. Ortega-Monux, and G. Mashanovich, "Subwavelength-grating metamaterial structures for silicon photonic devices," Proc. IEEE, Vol. 106, No. 12, 1-14, 2018.
doi:10.1109/JPROC.2018.2851614

8. Wu, Sh.-D., T. K. Gaylord, E. N. Glytsis, and Y.-M. Wu, "Three-dimensional converging-diverging Gaussian beam diffraction by a volume grating," J. Opt. Soc. Amer. A, Vol. 22, No. 7, 1293-1304, 2005.
doi:10.1364/JOSAA.22.001293

9. Ciapurin, I. V., L. B. Glebov, and V. I. Smirnov, "Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass," Proc. of SPIE, Vol. 5742, 183-194, 2005.
doi:10.1117/12.591215

10. Harvey, J. E. and E. A. Nevis, "Angular grating anomalies: Effects of finite beam size on wide-angle diffraction phenomena," Applied Optics, Vol. 43, No. 31, 6783-6788, 1992.
doi:10.1364/AO.31.006783

11. Serdyuk, V. M. and J. A. Titovitsky, "A simple analytic approximation for the refracted field at Gaussian beam incidence upon a boundary of absorbing medium," Journ. Electrom. Analysis Applic., Vol. 2, No. 11, 640-648, 2010.

12. Serdyuk, V. M. and A. S. Rudnitsky, "Efficiency of Gaussian light beam transformation into a waveguide mode of a plane dielectric layer under frustrated total internal reflection," JOSA A, Vol. 36, No. 9, 1573-1582, 2019.
doi:10.1364/JOSAA.36.001573

13. Hessel, A. and A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Applied Optics, Vol. 4, No. 10, 1275-1297, 1965.
doi:10.1364/AO.4.001275

14. Russell, P., "Optical volume holography," Physics Reports, Vol. 71, No. 4, 209-312, 1981.
doi:10.1016/0370-1573(81)90196-4

15. Lindquist, R. G., J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, M. Friends, and T. Leslie, "High resolution liquid crystal phase grating formed by fringing fields from interdigitated electrodes," Opt. Lett., Vol. 19, No. 9, 67-72, 1994.
doi:10.1364/OL.19.000670

16. Born, M. and E. Wolf, Principles of Optics, 7th Ed., Cambridge University Press, Cambridge, 1999.
doi:10.1017/CBO9781139644181

17. Sheng, P., R. S. Stepleman, and P. N. Sanda, "Exact eigenfunction for square-wave gratings: Application to diffraction and surface-plasmon calculations," Physical Review B, Vol. 26, No. 6, 2907-2916, 1982.
doi:10.1103/PhysRevB.26.2907

18. Rudnitsky, A. S. and V. Serdyuk, "Diffraction of a plane electromagnetic wave by a slot in a conducting screen of finite thickness placed in front of a half-infinite dielectric," Progress In Electromagnetics Research, Vol. 86, 277-290, 2008.
doi:10.2528/PIER08092605

19. Marcuse, D., Light Transmission Optics, Van Nostrand, New York, 1972.

20. Faddeev, D. K. and V. N. Faddeeva, Computational Methods of Linear Algebra, W. H. Freeman & Co., San Francisco and London, 1964.

21. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, 9th Ed., National Bureau of Standards, Washington, 1964.

22. Serdyuk, V., "Method of additive regularization of field integrals in the problem of electromagnetic diffraction by a slot in a conducting screen, placed before a dielectric layer," Progress In Electromagnetics Research B, Vol. 83, 129-151, 2019.
doi:10.2528/PIERB18102906