1. Zuo, L. and B. Wang, "ISAR imaging of non-uniform rotating targets based on optimized matching fourier transform," IEEE Access, Vol. 8, 64324-64330, 2020.
doi:10.1109/ACCESS.2020.2984487 Google Scholar
2. Kang, B. S., K. Lee, and K. T. Kim, "Image registration for 3-D interferometric-ISAR imaging through joint-channel phase difference functions," IEEE Transactions on Aerospace and Electronic Systems, Vol. 57, No. 1, 22-38, 2021.
doi:10.1109/TAES.2020.3021108 Google Scholar
3. Hu, C., L. Wang, Z. Li, and D. Zhu, "Inverse synthetic aperture radar imaging using a fully convolutional neural network," IEEE Geoscience and Remote Sensing Letters, Vol. 17, No. 7, 1203-1207, 2020.
doi:10.1109/LGRS.2019.2943069 Google Scholar
4. Cheng, P., J. Cheng, X. Wang, and J. Zhao, "An ISAR imaging method based on improved CAMP algorithm," IEEE Sensors Journal, Vol. 21, No. 12, 13514-13521, 2021.
doi:10.1109/JSEN.2021.3068281 Google Scholar
5. Stankovic, L., "ISAR image analysis and recovery with unavailable or heavily corrupted data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 3, 2093-2106, 2015.
doi:10.1109/TAES.2015.140413 Google Scholar
6. Ji, B., Y. Wang, B. Zhao, X. Lu, and R. Xu, "Novel super-resolution ISAR imaging method via two-dimensional unitary matrix pencil algorithm," 2020 15th IEEE International Conference on Signal Processing (ICSP), Vol. 1, 600-604, 2020.
doi:10.1109/ICSP48669.2020.9321092 Google Scholar
7. Zhang, S., Y. Liu, and X. Li, "Bayesian bistatic ISAR imaging for targets with complex motion under low SNR condition," IEEE Transactions on Image Processing, Vol. 27, No. 5, 2447-2460, 2018.
doi:10.1109/TIP.2018.2803300 Google Scholar
8. Zhang, S., Y. Liu, X. Li, and G. Bi, "Fast ISAR cross-range scaling using modified newton method," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 3, 1355-1367, 2018.
doi:10.1109/TAES.2017.2785560 Google Scholar
9. Hu, J., J. Zhang, Q. Zhai, R. Zhan, and D. Lu, "ISAR imaging using a new stepped-frequency signal format," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 7, 4291-4305, 2014.
doi:10.1109/TGRS.2013.2281072 Google Scholar
10. Zhang, L., Z. Qiao, M. Xing, Y. Li, and Z. Bao, "High-resolution ISAR imaging with sparse stepped-frequency waveforms," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 11, 4630-4651, 2011.
doi:10.1109/TGRS.2011.2151865 Google Scholar
11. Yeh, C. M., et al. "Rotational motion estimation for ISAR via triangle pose difference on two range-Doppler images," IET Radar Sonar & Navigation, Vol. 4, No. 4, 528-536, 2010.
doi:10.1049/iet-rsn.2009.0042 Google Scholar
12. Berizzi, F., E. D. Mese, M. Diani, and M. Martorella, "High-resolution ISAR imaging of maneuvering targets by means of the range instantaneous Doppler technique: Modeling and performance analysis," IEEE Transactions on Image Processing, Vol. 10, No. 12, 1880-1890, 2001.
doi:10.1109/83.974573 Google Scholar
13. Munoz-Ferreras, J. M. and F. Perez-Martinez, "On the Doppler spreading effect for the range-instantaneous-doppler technique in inverse synthetic aperture radar imagery," IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 1, 180-184, 2010.
doi:10.1109/LGRS.2009.2030372 Google Scholar
14. Wang, Y. and Y. Lin, "ISAR imaging of non-uniformly rotating target via range-instantaneous-Doppler-derivatives algorithm," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, No. 1, 167-176, 2014.
doi:10.1109/JSTARS.2013.2257699 Google Scholar
15. Liu, Q., A. Liu, Y. Wang, and H. Li, "A super-resolution sparse aperture ISAR sensors imaging algorithm via the MUSIC technique," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 9, 7119-7134, 2019.
doi:10.1109/TGRS.2019.2911686 Google Scholar
16. Zhang, S., et al. "High-resolution bistatic ISAR imaging based on two-dimensional compressed sensing," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2098-2111, 2015.
doi:10.1109/TAP.2015.2408337 Google Scholar
17. Jiu, B., H. Liu, H. Liu, L. Zhang, Y. Cong, and Z. Bao, "Joint ISAR imaging and cross-range scaling method based on compressive sensing with adaptive dictionary," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2112-2121, 2015.
doi:10.1109/TAP.2015.2409876 Google Scholar
18. Rodenbeck, C. T., et al. "Ultra-wideband low-cost phased-array radars," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, 3697-3703, 2005.
doi:10.1109/TMTT.2005.856668 Google Scholar
19. Zhang, L., Z. Qiao, M. Xing, J. Sheng, R. Guo, and Z. Bao, "High-resolution ISAR imaging by exploiting sparse apertures," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 997-1008, 2012.
doi:10.1109/TAP.2011.2173130 Google Scholar
20. Zheng, J., T. Su, W. Zhu, L. Zhang, Z. Liu, and Q. H. Liu, "ISAR imaging of nonuniformly rotating target based on a fast parameter estimation algorithm of cubic phase signal," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 9, 4727-4740, 2015.
doi:10.1109/TGRS.2015.2408350 Google Scholar
21. Kang, M., S. Lee, S. Lee, and K. Kim, "ISAR imaging of high-speed maneuvering target using gapped stepped-frequency waveform and compressive sensing," IEEE Transactions on Image Processing, Vol. 26, No. 10, 5043-5056, 2017.
doi:10.1109/TIP.2017.2728182 Google Scholar
22. Fan, H., L. Ren, E. Mao, and Q. Liu, "A high-precision method of phase-derived velocity measurement and its application in motion compensation of ISAR imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 1, 60-77, 2018.
doi:10.1109/TGRS.2017.2733579 Google Scholar
23. Chen, Y., et al. "An adaptive ISAR-imaging-considered task scheduling algorithm for multi-function phased array radars," IEEE Transactions on Signal Processing, Vol. 63, No. 19, 5096-5110, 2015.
doi:10.1109/TSP.2015.2449251 Google Scholar
24. Xiong, J., W. Wang, and K. Gao, "FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 1, 284-294, 2018.
doi:10.1109/TAES.2017.2756498 Google Scholar
25. Xu, J., G. Liao, S. Zhu, L. Huang, and H. C. So, "Joint range and angle estimation using MIMO radar with frequency diverse array," IEEE Transactions on Signal Processing, Vol. 63, No. 13, 3396-3410, 2015.
doi:10.1109/TSP.2015.2422680 Google Scholar
26. Ma, Y., P. Wei, and H. Zhang, "General focusing beamformer for FDA: Mathematical model and resolution analysis," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 089-3100, 2019. Google Scholar
27. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
28. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2275-2284, 2009.
doi:10.1109/TSP.2009.2014277 Google Scholar
29. Potter, L. C., et al. "Sparsity and compressed sensing in radar imaging," Proceedings of the IEEE, Vol. 98, No. 6, 1006-1020, 2010.
doi:10.1109/JPROC.2009.2037526 Google Scholar
30. Rong, J., Y. Wang, and T. Han, "Iterative optimization-based ISAR imaging with sparse aperture and its application in interferometric ISAR imaging," IEEE Sensors Journal, Vol. 19, No. 19, 8681-8693, 2019.
doi:10.1109/JSEN.2019.2923447 Google Scholar
31. Elad, M., "Optimized projections for compressed sensing," IEEE Transactions on Signal Processing, Vol. 55, No. 12, 5695-5702, 2007.
doi:10.1109/TSP.2007.900760 Google Scholar