1. DeFronzo, R. A., E. Ferrannini, P. Zimmet, and G. Alberti, International Textbook of Diabetes Mellitus, John Wiley & Sons, 2015.
doi:10.1002/9781118387658
2. Saeedi, P., I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova, et al. "Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas," Diabetes Research and Clinical Practice, Vol. 157, 107843, 2019.
doi:10.1016/j.diabres.2019.107843 Google Scholar
3. Hanna, J., M. Bteich, Y. Tawk, A. H. Ramadan, B. Dia, F. A. Asadallah, A. Eid, R. Kanj, J. Costantine, and A. A. Eid, "Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy," Science Advances, Vol. 6, No. 24, eaba5320, 2020.
doi:10.1126/sciadv.aba5320 Google Scholar
4. Zhang, W., Y. Du, and M. L. Wang, "Noninvasive glucose monitoring using saliva nano-biosensor," Sensing and Bio-Sensing Research, Vol. 4, 23-29, 2015.
doi:10.1016/j.sbsr.2015.02.002 Google Scholar
5. Olarte, O., J. Chilo, J. Pelegri-Sebastia, K. Barbe, and W. Van Moer, "Glucose detection in human sweat using an electronic nose," 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1462-1465, IEEE, 2013.
doi:10.1109/EMBC.2013.6609787 Google Scholar
6. Heikenfeld, J., "Non-invasive analyte access and sensing through eccrine sweat: Challenges and outlook circa 2016," Electroanalysis, Vol. 28, No. 6, 1242-1249, 2016.
doi:10.1002/elan.201600018 Google Scholar
7. Mun, P. S., H. N. Ting, Y. B. Chong, and T. A. Ong, "Dielectric properties of glycosuria at 0.2-50 GHz using microwave spectroscopy," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 17, 2278-2292, 2015.
doi:10.1080/09205071.2015.1072480 Google Scholar
8. Yan, Q., B. Peng, G. Su, B. E. Cohan, T. C. Major, and M. E. Meyerhoff, "Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration," Analytical Chemistry, Vol. 83, No. 21, 8341-8346, 2011.
doi:10.1021/ac201700c Google Scholar
9. Yao, H., A. J. Shum, M. Cowan, I. Lahdesmaki, and B. A. Parviz, "A contact lens with embedded sensor for monitoring tear glucose level," Biosensors and Bioelectronics, Vol. 26, No. 7, 3290-3296, 2011.
doi:10.1016/j.bios.2010.12.042 Google Scholar
10. Gu, D., D. Zhang, L. Zhang, and G. Lu, "Non-invasive blood glucose monitoring for diabetics by means of breath signal analysis," Sensors and Actuators B: Chemical, Vol. 173, 106-113, 2012.
doi:10.1016/j.snb.2012.06.025 Google Scholar
11. Wei, T.-T., H.-Y. Tsai, C.-C. Yang, W.-T. Hsiao, and K.-C. Huang, "Noninvasive glucose evaluation by human skin oxygen saturation level," 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings (I2MTC), 1-5, IEEE, 2016. Google Scholar
12. Aldhaeebi, M. A., T. S. Almoneef, A. Ali, Z. Ren, and O. M. Ramahi, "Near field breast tumor detection using ultra-narrow band probe with machine learning techniques," Scientific Reports, Vol. 8, No. 1, 1-16, 2018.
doi:10.1038/s41598-018-31046-9 Google Scholar
13. S. Matlab, , Matlab, The MathWorks, Natick, MA, 2012.
14. Jolliffe, I. T., "Principal components in regression analysis," Principal Component Analysis, 167-198, 2002. Google Scholar
15. Rasmussen, C. E., "Gaussian processes in machine learning," Summer School on Machine Learning, 63-71, Springer, 2003. Google Scholar
16. Williams, C. K. and C. E. Rasmussen, Gaussian Processes for Machine Learning, Vol. 2, No. 3, MIT Press Cambridge, 2006.
17. Cortes, C. and V. Vapnik, "Support-vector networks," Machine Learning, Vol. 20, No. 3, 273-297, 1995. Google Scholar