1. Freedman, R. and J. P. Vogiatzis, "Theory of microwave dielectric constant logging using the electromagnetic wave propagation method," Geophysics, Vol. 44, No. 5, 969-986, 1979.
doi:10.1190/1.1440989 Google Scholar
2. Blenkinsop, M., P. Baker, C. Clavier, W. Kenyon, and S. des Listerine, "Deep electromagnetic propagation tool interpretation," SPWLA 27th Annual Logging Symposium, SPWLA-1986-XX, June 9-13, 1986. Google Scholar
3. Rau, R., R. Davies, M. Finke, and M. Manning, "Advance in high frequency dielectric logging," SPWLA 32nd Annual Logging Symposium, SPWLA-1991-S, June 16-19, 1991. Google Scholar
4. Song, Y. L., G. H. Chen, and M. C. Chang, "Study and application of electromagnetic logging in Daqing oilfield," Petroleum Geological Development in Daqing, Vol. 16, No. 4, 1997. Google Scholar
5. Clark, B., M. G. Liiling, J. Jundt, M. Ross, and D. Best, "A dual depth resistivity measurement for FEWD," SPWLA 29th Annual Logging Symposium, SPWLA-1988-A, June 5-8, 1988. Google Scholar
6. Clark, B., D. F. Allen, D. L. Best, et al. "Electromagnetic propagation logging while drilling: Theory and experiment," SPE Formation Evaluation, Vol. 5, No. 3, 263-271, SPE-18117-PA, 1990.
doi:10.2118/18117-PA Google Scholar
7. Coope, D., L. C. Shen, and F. S. C. Huang, "The theory of 2 MHz resistivity tool and its application to measurement-while-drilling," The Log Analyst, Vol. 25, No. 3, 1-11, 1984. Google Scholar
8. Yang, J., D. Omeragic, and C. B. Liu, "Bed-boundary effect removal to aid formation resistivity interpretation from LWD propagation measurements at all dip angles," SPWLA 46th Annual Logging Symposium, SPWLA-2005-F, 2005. Google Scholar
9. Schlumberger Technology Corp. "New technology and application of dielectric logging," New Technology of Oilfield, Vol. 23, No. 1, 2011. Google Scholar
10. Halliburton Company "LOGIQ high-frequency dielectric tool manual,", 2011. Google Scholar
11. Norbisrath, J. H., "Statoil (aka Equinor), Dielectric permeability logging," SPWLA 59th Annual Logging Symposium, SPWLA-2018-J, June 2-6, 2018. Google Scholar
12. Bondarenko, A., V. Dorovsky, Yu. Perepechko, and N. Velker, "Dielectric permittivity dispersion measurements in downhole conditions - Effect on porosity measurements," SPE Russian Petroleum Technology Conference, SPE-176603-MS, Moscow, Russia, October 26-28, 2015. Google Scholar
13. Xing, G., H. Wang, and Z. Ding, "Adaptive dual-parameter deconvolution for high-frequency electromagnetic-wave logging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4178-4183, 2010.
doi:10.1109/TGRS.2010.2051552 Google Scholar
14. Liu, S. X. and M. T. Y. K. Sato, "Numerical and experimental study on multi-frequency electromagnetic well logging," Well Logging Technology, 278-282, 2003. Google Scholar
15. Kang, G. J., D. B. Fang, and S. F. Zhao, "Experiment method and technique physical modeling of multi-frequent electromagnetic logging," Journal of Jilin University (Earth Science Edition), Vol. 32, No. 4, 382-385, 2002. Google Scholar
16. Ph. Poley, J., J. J. Nooteboom, and P. J. de Waal, "Use of VHF dielectric measurements for borehole formation analysis," Log Analyst, Vol. 19, No. 3, 8-30, 1978. Google Scholar
17. Glinskikh, V. N., M. N. Nikitenko, and M. I. Epov, "Processing high-frequency electromagnetic logs from conducting formations: Linearized 2D forward and inverse solutions with regard to eddy currents," Russian Geology and Geophysics, Vol. 54, 1515-1521, 2013.
doi:10.1016/j.rgg.2013.10.016 Google Scholar
18. Chew, W. C., "Modeling of the dielectric logging tool at high frequencies: Theory," IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, No. 4, 382-387, 1988.
doi:10.1109/36.3041 Google Scholar
19. Dunn, J. M., "Lateral wave propagation in a three-layered medium," Radio Science, Vol. 21, 787-796, 1986.
doi:10.1029/RS021i005p00787 Google Scholar
20. Weilan, T., "Time domain electromagnetic field computation with finite difference methods," International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, Vol. 9, 293-319, 1996. Google Scholar
21. Graves, R., "Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences," Bulletin of the Seismological Society of America, Vol. 86, No. 4, 1091-1106, 1996. Google Scholar
22. Hirtenfelder, F., T. Lopetegi, M. Sorolla, and L. Sassi, "Designing components containing photonic bandgap structures using time domain field solvers," Microwave Engineering, 23-29, 2002. Google Scholar
23. Chieslar, J. D., "A meshing technique for large scale modeling of solution mines in salt and potash," The 55th US Rock Mechanics/Geomechanics Symposium, Houston, Texas, USA, June 20-23, 2021. Google Scholar
24. Guo, H., H. Zhang, and G. Li, "Prediction of water saturation for tight sandstone reservoirs by using array dielectric logging ADL," The SPE Gas & Oil Technology Showcase and Conference, Dubai, UAE, October 21-23, 2019. Google Scholar
25. Li, C., S. Deng, Z. Li, Y. Fan, J. Zhang, and J. Yang, "Application of high-frequency dielectric logging technology for shale oil production," Progress In Electromagnetics Research Letters, Vol. 100, 53-61, 2021.
doi:10.2528/PIERL21081403 Google Scholar