Vol. 107
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-01-21
Compact, Dual-Polarized, Oblong Loop Antenna for 5G Laptops
By
Progress In Electromagnetics Research M, Vol. 107, 181-191, 2022
Abstract
A compact, two-port, oblong loop antenna producing two orthogonal waves for fifth-generation (5G) operation in the 3.4-3.6 GHz band with transmission coefficient (S12) lower than -32 dB and excellent envelope correlation coefficient (ECC) less than 0.002 is introduced for laptop antenna applications. Unlike the conventional, probe-fed, dual-polarized patch antennas, the proposed design uses the loop antenna fed by the coaxial cables and has a coplanar structure. The loop antenna is placed 1 mm above the top edge of the display, has a compact size of 30 mm × 4 mm and two feed ports spaced merely 2 mm (about 0.02-λ at 3.4 GHz) apart. Port1 is designed as a coupling feed to the loop while port2 is a direct feed in the loop, all located along the loop's central line. With this feeding arrangement, port2 is located in the current-null region when port1 is excited, whereas maximum currents of port1 excitation are located in the current nulls of port2 excitation. These properties lead to two decoupled, orthogonal radiating waves with very low ECC. Additionally, due to the oblong structure of the loop, pattern diversity is also achieved. Details of the dual-polarized loop antenna for 5G applications are presented.
Citation
Saou-Wen Su, "Compact, Dual-Polarized, Oblong Loop Antenna for 5G Laptops," Progress In Electromagnetics Research M, Vol. 107, 181-191, 2022.
doi:10.2528/PIERM21112504
References

1. Kurup, D. G., A. Rydberg, and M. Himdi, "Compact microstrip-T coupled patch antenna for dual polarisation and active antenna applications," Electronics Lett., Vol. 38, 1240-1241, 2002.
doi:10.1049/el:20020866

2. Wong, K. L. and T. W. Chiou, "Finite ground plane effects on broadband dual polarized patch antenna properties," IEEE Trans. Antennas Propagat., Vol. 51, 903-904, 2003.
doi:10.1109/TAP.2003.811067

3. Wong, H., K. L. Lau, and K. M. Luk, "Design of dual-polarized L-probe patch antenna arrays with high isolation," IEEE Trans. Antennas Propagat., Vol. 67, 45-52, 2004.
doi:10.1109/TAP.2003.822402

4. Gao, S. and A. Sambell, "Dual-polarized broad-band microstrip antennas fed by proximity coupling," IEEE Trans. Antennas Propagat., Vol. 53, 526-530, 2005.
doi:10.1109/TAP.2004.838763

5. Ryu, K. S. and A. A. Kishk, "Wideband dual-polarized microstrip patch excited by hook shaped probes," IEEE Trans. Antennas Propagat., Vol. 56, 3645-3649, 2008.
doi:10.1109/TAP.2008.2007377

6. Yang, S. L., K. M. Luk, H. W. Lai, A. A. Kishk, and K. F. Lee, "A dual-polarized antenna with pattern diversity," IEEE Trans. Antennas Propagat. Mag., Vol. 50, 71-79, 2008.
doi:10.1109/MAP.2008.4768926

7. Wei, K., Z. Zhang, W. Chen, and Z. Feng, "A novel hybrid-fed patch antenna with pattern diversity," IEEE Antennas Wireless Propagat. Lett., Vol. 9, 562-565, 2010.
doi:10.1109/LAWP.2010.2051402

8. Sun, L., G. X. Zhang, B. H. Sun, W. D. Tang, and J. P. Yuan, "A single patch antenna with broadside and conical radiation patterns for 3G/4G pattern diversity," IEEE Antennas Wireless Propagat. Lett., Vol. 15, 433-436, 2015.
doi:10.1109/LAWP.2015.2451132

9. Wang, Y. and D. Piao, "A dual-polarized antenna with pattern diversity based on a two-mode single-layer microstrip patch," Proc. IEEE MTT-S Int. Wireless Symposium, 1-3, Chengdu, China, 2018.

10. WRC-Press Release, World Radiocommunication Conference Allocates Spectrum for Future Innovation, http://www.itu.int/net/pressoffice/press_releases/2015/56.aspx.

11. Su, S. W., Y. T. Hsieh, and S. C. Chen, "Integration of very-low-profile slot antenna into notebook metal cover with narrow bezel," Proc. Int. Symposium on Antennas and Propagat., 1-2, Phuket, Thailand, 2017.

12. Su, S. W., "Very-low-profile, 2.4/5-GHz WLAN monopole antenna for large screen-to-body-ratio notebook computers," Microw. Opt. Technol. Lett., Vol. 60, 1313-1318, 2018.
doi:10.1002/mop.31156

13. Su, S. W., C. T. Lee, and S. C. Chen, "Compact, printed, tri-band loop antenna with capacitively-driven feed and end-loaded inductor for notebook computers," IEEE Access, Vol. 6, 6692-6699, 2018.
doi:10.1109/ACCESS.2018.2794606

14. Su, S. W., C. T. Lee, and S. C. Chen, "Very-low-profile, triband, two-antenna system for WLAN notebook computers," IEEE Antennas Wireless Propagat. Lett., Vol. 17, 1626-1629, 2018.
doi:10.1109/LAWP.2018.2858849

15. Su, S. W., C. T. Lee, and Y. W. Hsiao, "Compact two-inverted-F-antenna system with highly integrated π-shaped decoupling structure," IEEE Trans. Antennas Propagat., Vol. 67, 6182-6186, 2019.
doi:10.1109/TAP.2019.2925286

16. Ansys HFSS, ANSYS Inc., https://www.ansys.com/products/electronics/ ansys-hfss.

17. Wong, K. L. and M. T. Chen, "Small-size LTE/WWAN printed loop antenna with an inductively coupled branch strip for bandwidth enhancement in the table computer," IEEE Trans. Antennas Propagat., Vol. 61, 6144-6151, 2013.
doi:10.1109/TAP.2013.2282291

18. Wong, K. L., C. Y. Tsai, and J. Y. Lu, "Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone," IEEE Trans. Antennas Propagat., Vol. 65, 1765-1778, 2017.
doi:10.1109/TAP.2017.2670534

19. Li, Y., C.-Y.-D. Sim, Y. Luo, and G. Yang, "12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, 2017.
doi:10.1109/ACCESS.2017.2763161

20. Chang, W. H., S. W. Su, and B. C. Tseng, "Self-decoupled, 5G NR77/78/79 two-antenna system for notebook computers," Electrical Design of Advanced Packaging and Systems, 1-3, Kaohsiung, Taiwan, 2019.

21. Sun, L., Y. Li, Z. Zhang, and H. Wang, "Self-decoupled MIMO antenna pair with shared radiator for 5G smartphones," IEEE Trans. Antennas Propagat., Vol. 68, 3423-3432, 2020.
doi:10.1109/TAP.2019.2963664

22. Chen, S. C., L. C. Chou, C. G. Hsu, and S. M. Li, "Compact sub-6-GHz four-element MIMO slot antenna system for 5G tablet devices," IEEE Access, Vol. 8, 154652-154662, 2020.
doi:10.1109/ACCESS.2020.3016649

23. Sun, L., Y. Li, and Z. Zhang, "Wideband integrated quad-element MIMO antennas based on complementary antenna pairs for 5G smartphones," IEEE Trans. Antennas Propagat., Vol. 69, 4466-4474, 2021.
doi:10.1109/TAP.2021.3060020

24. Su, S. W., "Printed loop antenna integrated into a compact, outdoor WLAN access point with dual-polarized radiation," Progress In Electromagnetics Research C, Vol. 19, 25-35, 2011.
doi:10.2528/PIERC10102602

25. Wan, C. C. and S. W. Su, "Compact, self-isolated 2.4/5-GHz WLAN antenna for notebook computer applications," Progress In Electromagnetics Research M, Vol. 83, 1-8, 2019.
doi:10.2528/PIERM19042103

26. Browne, D. W., M. Manteghi, M. P. Fitz, and Y. Rahmat-Samii, "Experiments with compact antenna arrays for MIMO radio communications," IEEE Trans. Antennas Propagat., Vol. 54, No. 11, 3239-3250, 2006.
doi:10.1109/TAP.2006.883973

27. Chae, S. H., S. K. Oh, and S. O. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas Wireless Propagat. Lett., Vol. 6, 122-125, 2007.
doi:10.1109/LAWP.2007.893109

28. Su, S. W., C. T. Lee, and F. S. Chang, "Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications," IEEE Trans. Antennas Propagat., Vol. 60, 456-463, 2012.
doi:10.1109/TAP.2011.2173450

29. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics," IEEE Antennas and Propagat. Mag., Vol. 55, 218-232, 2013.
doi:10.1109/MAP.2013.6735522

30. Dietrich, C. B., K. Dietze, J. R. Nealy, and W. L. Stutzman, "Spatial, polarization, and pattern diversity for wireless handheld terminals," IEEE Trans. Antennas Propagat., Vol. 49, 1271-1281, 2001.
doi:10.1109/8.947018

31. Buxton, C. G., W. L. Stutzman, R. R. Nealy, and A. M. Orndorff, "The folded dipole: A self-balancing antenna," Microw. Opt. Technol. Lett., Vol. 29, 155-160, 2001.
doi:10.1002/mop.1114

32. SATIMO SG 24, MVG, http://www.mvg-world.com/en/products/antenna-measurement/multi-probe-systems/sg-24.

33. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Lett., Vol. 39, 705-707, 2003.
doi:10.1049/el:20030495

34. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Trans. Vehicular Technol., Vol. 36, 149-172, 1987.
doi:10.1109/T-VT.1987.24115

35. Jha, K. R. and S. K. Sharma, "Combination of MIMO Antennas for handheld devices," IEEE Antennas and Propagat. Mag., Vol. 60, 118-131, 2018.
doi:10.1109/MAP.2017.2774198

36. Sharawi, M. S., Printed MIMO Antenna Engineering, Artech House, 2014.