1. Cannon, B. L., J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," IEEE Trans. Power Electron., Vol. 24, No. 7, 1819-1825, 2009.
doi:10.1109/TPEL.2009.2017195 Google Scholar
2. Kurs, A., R. Moffatt, and M. Soljacic, "Simultaneous mid-range power transfers to multiple devices," Appl. Phys. Lett., Vol. 98, No. 4, 044102-1-044102-3, 2010. Google Scholar
3. Casanova, J. J., Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receivers," IEEE Trans. Ind. Electron., Vol. 56, 3060-3068, 2009.
doi:10.1109/TIE.2009.2023633 Google Scholar
4. Ding, K., Y. Yu, and H. Lin, "A novel dual-band scheme for magnetic resonant wireless power transfer," Progress In Electromagnetics Research Letters, Vol. 80, 53-59, 2018.
doi:10.2528/PIERL18082201 Google Scholar
5. Hasanzadeh, S. and S. Vaez-Zadeh, "Design of a wireless power transfer system for high power moving applications," Progress In Electromagnetics Research M, Vol. 28, 258-271, 2013.
doi:10.2528/PIERM12102210 Google Scholar
6. Liu, S., J. Tan, and Y. Liu, "Achieving the constant output power and transfer efficiency of a magnetic coupling resonance wireless power transfer system based on the magnetic field superposition principle," Progress In Electromagnetics Research M, Vol. 81, 127-136, 2019. Google Scholar
7. Koh, K. E., T. C. Beh, T. Imura, and Y. Hori, "Impedance matching and power division using impedance inverter for wireless power transfer via magnetic resonant coupling," IEEE Trans. Ind. Appl., Vol. 50, 2061-2070, 2014.
doi:10.1109/TIA.2013.2287310 Google Scholar
8. Zhang, Y., T. Lu, Z. Zhao, F. He, K. Chen, and L. Yuan, "Selective wireless power transfer to multiple loads using receivers of different resonant frequency," IEEE Trans. on Power Electron., Vol. 30, 6001-6005, 2015.
doi:10.1109/TPEL.2014.2347966 Google Scholar
9. Cheon, S., Y. H. Kim, S. Y. Kang, M. L. Lee, J. M. Lee, and T. Zyung, "Circuit-model-based-analysis of a wireless energy-transfer system via coupled magnetic resonances," IEEE Trans. Ind. Electron., Vol. 58, 3370-3378, 2011. Google Scholar
10. Sahany, S., S. S. Biswal, D. P. Kar, A. A. Pattnaik, and S. Bhuyan, "Receiver coil position selection through magnetic field coupling of a WPT system used for powering multiple electronic devices," Progress In Electromagnetics Research M, Vol. 85, 165-173, 2019.
doi:10.2528/PIERM19071902 Google Scholar
11. Fu, M., T. Zhang, C. Ma, and X. Zhu, "Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 801-812, 2015.
doi:10.1109/TMTT.2015.2398422 Google Scholar
12. Parise, M., F. Loreto, D. Romano, G. Antonini, and J. Ekman, "Accurate computation of mutual inductance of non coaxial pancake coils," Energies, Vol. 14, 16, 2021. Google Scholar
13. Shinohara, N., "The wireless power transmission: Inductive coupling, radio wave, and resonance coupling," Wiley Interdisciplinary Reviews: Energy and Environment, Vol. 1, 337-346, 2012.
doi:10.1002/wene.43 Google Scholar
14. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, 1865-1872, 2018.
doi:10.1109/TEMC.2018.2790265 Google Scholar
15. Bou, E., E. Alarcon, and J. Gutierrez, "A comparison of analytical models for resonant inductive coupling wireless power transfer," Progress In Electromagnetic Research Symposium Proceedings, Moscow, Russia, August 19-23, 2012. Google Scholar
16. Biswal, S. S., D. P. Kar, and S. Bhuyan, "Parameter trade-off between electric load, quality factor and coupling coefficient for performance enrichment of wireless power transfer system," Progress In Electromagnetics Research M, Vol. 91, 49-58, 2020.
doi:10.2528/PIERM20010902 Google Scholar