1. Ezhilarasan, E. and M. Dinakaran, "A review on mobile technologies: 3G, 4G and 5G," 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM), 369-373, 2017. Google Scholar
2. Yu, H., H. Lee, and H. Jeon, "What is 5G? Emerging 5G mobile services and network requirements," Sustainability, Vol. 9, No. 10, 1848, 2017.
doi:10.3390/su9101848 Google Scholar
3. Kim, D., "A 2020 perspective on 'A dynamic model for the evolution of the next generation Internet-Implications for network policies': Towards a balanced perspective on the Internet's role in the 5G and Industry 4.0 era," Electron. Commer. Res. Appl., Vol. 41, 100966, 2020.
doi:10.1016/j.elerap.2020.100966 Google Scholar
4. Magsi, H., A. H. Sodhro, F. A. Chachar, S. A. K. Abro, G. H. Sodhro, and S. Pirbhulal, "Evolution of 5G in Internet of medical things," 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 1-7, 2018. Google Scholar
5. Rao, S. K. and R. Prasad, "Impact of 5G technologies on industry 4.0," Wirel. Pers. Commun., Vol. 100, No. 1, 145-159, 2018.
doi:10.1007/s11277-018-5615-7 Google Scholar
6. Fady, B., J. Terhzaz, A. Tribak, F. Riouch, and A Mediavilla Sanchez, "Novel miniaturized planar low-cost multiband antenna for industry 4.0 communications," Progress In Electromagnetics Research C, Vol. 93, 29-38, 2019.
doi:10.2528/PIERC19030809 Google Scholar
7. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "Design of a band-stop planar filter for telecommunications applications," Procedia Manuf., Vol. 46, 788-792, 2020.
doi:10.1016/j.promfg.2020.04.006 Google Scholar
8. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "A compact microstrip t-shaped resonator band pass filter for 5G applications," 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), 1-5, 2020. Google Scholar
9. Achraou, S., H. Elftouh, A. Farkhsi, A. Zakriti, and S. Ben Haddi, "Substrate integrated waveguide bandpass filter for mm-Wave applications," Procedia Manuf., Vol. 46, 766-770, 2020.
doi:10.1016/j.promfg.2020.04.002 Google Scholar
10. Jamshidi, M., A. Lalbakhsh, S. Lotfi, H. Siahkamari, B. Mohamadzade, and J. Jalilian, "A neuro-based approach to designing a Wilkinson power divider," Int. J. RF Microw. Comput. Eng., Vol. 30, No. 3, e22091, 2020. Google Scholar
11. Rezaei, A., L. Noori, and M. H. Jamaluddin, "Novel microstrip lowpass-bandpass diplexer with low loss and compact size for wireless applications," AEU --- International J. Electron. Commun., Vol. 101, 152-159, 2019.
doi:10.1016/j.aeue.2019.02.005 Google Scholar
12. Upadhyaya, T., J. Pabari, V. Sheel, A. Desai, R. Patel, and S. Jitarwal, "Compact and high isolation microstrip diplexer for future radio science planetary applications," AEU --- International J. Electron. Commun., Vol. 127, 153497, 2020.
doi:10.1016/j.aeue.2020.153497 Google Scholar
13. Ghosh, P., "Microwave and satellite communications," TEMS J. Technology Eng. Maths Sci., Vol. 3, No. 2, 90-91, 2021. Google Scholar
14. Saleh, S., W. Ismail, and I. S. Z. Abidin, "5G Hairpin and interdigital bandpass filters," Int. J. Integr. Eng., Vol. 12, No. 6, 71-79, 2020.
doi:10.30880/ijie.2020.12.06.009 Google Scholar
15. Al-Yasir, Y., R. A. Abd-Alhameed, J. M. Noras, A. M. Abdulkhaleq, and N. O. Parchin, "Design of very compact combline band-pass filter for 5G applications," The Loughborough Antennas & Propagation Conference (LAPC 2018), 1-4, 2018. Google Scholar
16. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley & Sons, 2004.
17. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "5G narrow-band band-pass filter using parallel coupled lines and L-shaped resonator," 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 1-4, 2020. Google Scholar
18. Saieed, A., W. Pao, and H. M. Ali, "Prediction of phase separation in a T-Junction," Exp. Therm. Fluid Sci., Vol. 97, 160-179, 2018.
doi:10.1016/j.expthermflusci.2018.04.019 Google Scholar
19. Chinig, A., et al., "A new microstrip diplexer using coupled stepped impedance resonators," Int. J. Electr. Comput. Energ. Electron. Commun. Eng., Vol. 9, No. 1, 41-44, 2015. Google Scholar
20. Yousif, A. B. and S. E. Ahmed, "A dual-band coupled line based microstrip diplexer for wireless applications," J. Glob. Sci. Res., Vol. 10, 845-853, 2020. Google Scholar
21. Salehi, M. R., S. Keyvan, E. Abiri, and L. Noori, "Compact microstrip diplexer using new design of triangular open loop resonator for 4G wireless communication systems," AEU --- International J. Electron. Commun., Vol. 70, No. 7, 961-969, 2016.
doi:10.1016/j.aeue.2016.04.015 Google Scholar
22. Chinig, A., et al., "A new microstrip diplexer using open-loop resonators," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 13, No. 2, 185-196, 2014.
doi:10.1590/S2179-10742014000200007 Google Scholar
23. Rezaei, A., S. I. Yahya, L. Nouri, and M. H. Jamaluddin, "Design of a low-loss microstrip diplexer with a compact size based on coupled meandrous open-loop resonators," Analog Integr. Circuits Signal Process., Vol. 102, No. 3, 579-584, 2020.
doi:10.1007/s10470-020-01625-w Google Scholar
24. Nwajana, A. O. and K. S. K. Yeo, "Microwave diplexer purely based on direct synchronous and asynchronous coupling," Radioengineering, Vol. 25, No. 2, 247-252, 2016.
doi:10.13164/re.2016.0247 Google Scholar
25. Chinig, A., A. Errkik, L. El Abdellaoui, A. Tajmouati, J. Zbitou, and M. Latrach, "Design of a microstrip diplexer and triplexer using open loop resonators," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 15, 65-80, 2016.
doi:10.1590/2179-10742016v15i2602 Google Scholar