1. Gu, H., H.-Q. Zhu, and Y.-Z. Hua, "Soft sensing modeling of magnetic suspension rotor displacements based on continuous hidden markov model," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, Apr. 2018.
doi:10.1109/TASC.2017.2784397 Google Scholar
2. Le, Y. and K. Wang, "Design and optimization method of magnetic bearing for high-speed motor considering eddy current effects," IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 4, 2061-2072, Aug. 2016.
doi:10.1109/TMECH.2016.2569822 Google Scholar
3. Usman, I., M. Paone, K. Smeds, and X. Lu, "Radially biased axial magnetic bearings/motors for precision rotary-axial spindles," IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 3, 411-420, Jun. 2011.
doi:10.1109/TMECH.2011.2119323 Google Scholar
4. Abooee, A. and A. M. Arefi, "Robust finite-time stabilizers for five-degree-of-freedom active magnetic bearing system," Journal of the Franklin Institute-Engineering and Applied Mathematics, Vol. 356, 80-102, 2019.
doi:10.1016/j.jfranklin.2018.08.026 Google Scholar
5. Peng, C., J. Sun, X. Song, and J. Fang, "Frequency-varying current harmonics for active magnetic bearing via multiple resonant controllers," IEEE Transactions on Industrial Electronics, Vol. 64, No. 1, 517-526, Jan. 2017.
doi:10.1109/TIE.2016.2598723 Google Scholar
6. Gu, H., H. Zhu, and Y. Hua, "Soft sensing modeling of magnetic suspension rotor displacements based on continuous hidden Markov model," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, Apr. 2018.
doi:10.1109/TASC.2017.2784397 Google Scholar
7. Yu, J. and C. Zhu, "A multifrequency disturbances identification and suppression method for the self-sensing AMB rotor system," IEEE Transactions on Industrial Electronics, Vol. 65, No. 8, 6382-6392, Aug. 2018.
doi:10.1109/TIE.2017.2784340 Google Scholar
8. Zhang, W.-Y., H.-Q. Zhu, Z.-B. Yang, X.-D. Sun, and Y. Yuan, "Nonlinear model analysis and ``switching model'' of AC-DC three degree of freedom hybrid magnetic bearing," IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 2, 1102-1115, Apr. 2016.
doi:10.1109/TMECH.2015.2463676 Google Scholar
9. Zhang, W.-Y., H.-K. Yang, L. Cheng, and H.-Q. Zhu, "Modeling based on exact segmentation of magnetic field for a centripetal force type-magnetic bearing," IEEE Transactions on Industrial Electronics, Vol. 67, No. 9, 7691-7701, Sept. 2020. Google Scholar
10. Wang, S.-S., H.-Q. Zhu, M.-Y. Wu, and W.-Y. Zhang, "Active disturbance rejection decoupling control for three-degree-of-freedom six-pole active magnetic bearing based on BP neural network," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, 1-5, Jun. 2020. Google Scholar
11. Ren, X.-J., M. Feng, and T.-M. Ren, "Design and optimization of a radial high-temperature superconducting magnetic bearing," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 2, 1-5, Mar. 2019.
doi:10.1109/TASC.2018.2886812 Google Scholar
12. Wu, H., C.-G. Xu, D.-G. Xiao, and J. Hao, "Magnetic field analysis and optimal design of magnetic bearing," 2009 International Conference on Mechatronics and Automation, 1666-1670, Changchun, 2009. Google Scholar
13. Yamagishi, K., "Optimum design of integrated magnetic bearing using multiple HTS bulk units," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 5, 1-5, Aug. 2019.
doi:10.1109/TASC.2019.2898325 Google Scholar
14. Zhu, R., W. Xu, C. Ye, J. Zhu, G. Lei, and X. Li, "Design optimization of a novel heteropolar radial hybrid magnetic bearing using magnetic circuit model," IEEE Transactions on Magnetics, Vol. 54, No. 3, 1-5, Mar. 2018.
doi:10.1109/TMAG.2018.2800462 Google Scholar
15. Xu, B., L. Zhang, and W. Ji, "Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives," IEEE Transactions on Transportation Electrification, 2021. Google Scholar
16. Zhu, H. and T. Liu, "Rotor displacement self-sensing modeling of six-pole radial hybrid magnetic bearing using improved particle swarm optimization support vector machine," IEEE Transactions on Power Electronics, Vol. 35, No. 11, 12296-12306, Nov. 2020.
doi:10.1109/TPEL.2020.2982746 Google Scholar
17. Fernandes, J. F.-P., A. J. A. Costa, and J. Arnaud, "Optimization of a horizontal axis HTS ZFC levitation bearing using genetic decision algorithms over finite element results," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 2, 1-8, Mar. 2020.
doi:10.1109/TASC.2020.2964546 Google Scholar
18. Saha, S. and M. Nabi, "Control of axial active magnetic bearing using reduced order model," 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), 1-5, Manama, Bahrain, 2019. Google Scholar
19. Safaeian, R. and H. Heydari, "Optimal design of passive permanent magnet bearings," 2019 27th Iranian Conference on Electrical Engineering (ICEE), 458-463, Yazd, Iran, 2019.
doi:10.1109/IranianCEE.2019.8786766 Google Scholar
20. Chen, Z., Z. Lin, C. Yue, and Y. Li, "Particle swarm optimized command filtered backstepping control for an active magnetic bearing system*," 2018 IEEE International Conference on Information and Automation (ICIA), 155-160, Wuyishan, China, 2018.
doi:10.1109/ICInfA.2018.8812554 Google Scholar
21. He, Y., X. He, J. Ma, and Y. Fang, "Optimization research on a switching power amplifier and a current control strategy of active magnetic bearing," IEEE Access, Vol. 8, 34833-34841, 2020.
doi:10.1109/ACCESS.2020.2974765 Google Scholar
22. Han, B.-C., Q.-J. Xu, and Q. Yuan, "Multiobjective optimization of a combined radial-axial magnetic bearing for magnetically suspended compressor," IEEE Transactions on Industrial Electronics, Vol. 63, No. 4, 2284-2293, Apr. 2016. Google Scholar
23. Chen, R., H. Li, and J. Tian, "The relationship between the number of poles and the bearing capacity of radial magnetic bearing," 2017 Chinese Automation Congress (CAC), 5553-5557, Jinan, 2017.
doi:10.1109/CAC.2017.8243771 Google Scholar
24. Quéval, L., G. G. Sotelo, and Y. Kharmiz, "Optimization of the superconducting linear magnetic bearing of a maglev vehicle," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 3, 1-5, Apr. 2016.
doi:10.1109/TASC.2016.2528989 Google Scholar
25. Cansiz, A., I. Yildizer, and D. T. McGuiness, "A case study for a superconducting magnetic bearing optimization," 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), 1466-1470, Bursa, 2017. Google Scholar
26. Smirnov, A., N. Uzhegov, T. Sillanpää, J. Pyrhönen, and O. Pyrhönen, "High-speed electrical machine with active magnetic bearing system optimization," IEEE Transactions on Industrial Electronics, Vol. 64, No. 12, 9876-9885, Dec. 2017.
doi:10.1109/TIE.2017.2716875 Google Scholar
27. Liu, X. and B.-C. Han, "The multiobjective optimal design of a two-degree-of-freedom hybrid magnetic bearing," IEEE Transactions on Magnetics, Vol. 50, No. 9, 1-14, Sept. 2014.
doi:10.1109/TMAG.2014.2313315 Google Scholar
28. Hua, Y.-Z., H.-Q. Zhu, M. Gao, and Z.-Y. Ji, "Multi-objective optimization design of permanent magnet assisted bearingless synchronous reluctance motor using NSGA-II," IEEE Transactions on Industrial Electronics, Vol. 68, No. 11, 10477-10487, Nov. 2021.
doi:10.1109/TIE.2020.3037873 Google Scholar