Vol. 103
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-02-24
A Novel Switchable Dielectric Bandpass Filter with Reconfigurable Transmission Zeros
By
Progress In Electromagnetics Research Letters, Vol. 103, 57-63, 2022
Abstract
This paper proposes a new method to produce and reconfigure transmission zero(s) (TZ(s)). The TZs are constructed by using lumped elements in series with dielectric resonators, which is different from conventional methods such as introducing a cross coupling between nonadjacent resonators and mixed coupling between adjacent resonators. The proposed filter consists of two dielectric resonators, a capacitor, an inductor, two PIN diodes, etc. Two PIN diodes are used as switches to realize reconfigurable TZ(s). The mechanism is analyzed theoretically. An equivalent schematic diagram is simulated by using ADS software. The simulated results show that the structure can realize four response states, i.e., no TZ in the stopband, one TZ in the lower stopband, one TZ in the upper stopband, and two TZs in both sides of the stopband of the filter, respectively. The dielectric resonators (DRs) were made of dielectric ceramics with high dielectric constant of about 92. The filter was fabricated on a dielectric substrate and measured by using a vector network analyzer and double regulated DC power supply.
Citation
Liangzu Cao, Di Deng, Shuai Wu, Jun-Mei Yan, and Lixia Yin, "A Novel Switchable Dielectric Bandpass Filter with Reconfigurable Transmission Zeros," Progress In Electromagnetics Research Letters, Vol. 103, 57-63, 2022.
doi:10.2528/PIERL22010606
References

1. Cao, L., L. Wang, and L. Yin, "Progress in electrically tunable microwave bandpass filters," Electronic Components & Materials in Chinese, Vol. 27, No. 2, 9-17, 2019.

2. Lan, B.-Z., Y. Qu, C.-J. Guo, et al. "A fully reconfigurable bandpass-to-notch filter with wide bandwidth tuning range based on external quality factor tuning and multiple-mode resonator," Microw. Opt. Technol. Lett., Vol. 61, No. 5, 1253-1258, 2019.
doi:10.1002/mop.31725

3. Kingsly, S., M. Kanagasabai, M. G. N. Alsath, et al. "Compact frequency and bandwidth tunable bandpass-bandstop microstrip filter," Microw. Wirel. Compon. Lett., Vol. 28, No. 9, 786-788, 2018.
doi:10.1109/LMWC.2018.2858005

4. Schuster, C., A. Wiens, F. Schmidt, et al. "Performance analysis of reconfigurable bandpass filters with continuously tunable center frequency and bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4573-4584, 2017.
doi:10.1109/TMTT.2017.2742479

5. Lin, W., K. Zhou, and K. Wu, "Tunable bandpass filters with one switch-able transmission zero by only tuning resonances," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 2, 105, Feb. 2021.
doi:10.1109/LMWC.2020.3039915

6. Fu, M., Q. Feng, Q. Xiang, and N. Jiang, "Fully tunable filter with cross coupling and reconfigurable transmission zero," Int. J. RF Microw. Comput. Aided. Eng., e22407, 2020.

7. Chun, Y.-H. and J.-S. Hong, "Electronically reconfigurable dual-mode microstrip open-loop resonator filter," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 7, 449-451, Jul. 2008.
doi:10.1109/LMWC.2008.924922

8. Chiou, Y.-C. and G. M. Rebeiz, "A tunable three-pole 1.5-2.2-GHz bandpass filter with bandwidth and transmission zero control," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 11, 2872-2878, 2011.
doi:10.1109/TMTT.2011.2164619

9. Cao, L. Z., Z.-J. Li, D. Deng, et al. "A tunable bandpass filter with bandwidth or transmission zeros control," International Conference on Microwave and Millimeter Wave Technology, 1-3, 2021.

10. Fathelbab, W. M. and M. B. Steer, "A reconfigurable bandpass filter for RF/microwave multifunctional systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 3, 1111-1116, 2005.
doi:10.1109/TMTT.2005.843502

11. Tsai, H.-J., B.-C. Huang, N.-W. Chen, et al. "A reconfigurable bandpass filter based on a varactor-perturbed, T-shaped dual-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 5, 297299, 2014.
doi:10.1109/LMWC.2014.2306893

12. Cao, L., J. Hu, and L. Yin, "Compact coaxial dielectric bandpass filter with load-source coupling," 2015 Asia-Pacific Microwave Conference (APMC), Vol. 2, 1-3, 2015.

13. Hong, J.-S., Microstrip Filters for RF/Microwave Applications, Wiley, New York, NY, USA, 2011.
doi:10.1002/9780470937297