1. Morimoto, S., S. Ooi, Y. Inoue, and M. Sanada, "Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications," IEEE Transactions on Industrial Electronics, Vol. 61, No. 10, 5749-5756, 2014, doi: 10.1109/TIE.2013.2289856. Google Scholar
2. Ramesh, P. and N. C. Lenin, "High power density electrical machines for electric vehicles - Comprehensive review based on material technology," IEEE Transactions on Magnetics, Vol. 55, No. 11, 1-21, 2019, doi: 10.1109/TMAG.2019.2929145. Google Scholar
3. Bonthu, S. S. R., A. Arafat, and S. Choi, "Comparisons of rare-earth and rare-earth free external rotor permanent magnet assisted synchronous reluctance motors," IEEE Transactions on Industrial Electronics, Vol. 64, No. 12, 9729-9738, 2017, doi: 10.1109/TIE.2017.2711580. Google Scholar
4. Yu, D., X. Huang, X. Zhang, J. Zhang, Q. Lu, and Y. Fang, "Optimal design of outer rotor interior permanent magnet synchronous machine with hybrid permanent magnet," IEEE Transactions Applied Superconductivity, Vol. 29, No. 2, 1-5, 2019, doi: 10.1109/TASC.2019.2895260. Google Scholar
5. Wu, W., X. Zhu, L. Quan, Y. Du, Z. Xiang, and X. Zhu, "Design and analysis of a hybrid permanent magnet assisted synchronous reluctance motor considering magnetic saliency and PM usage," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-6, 2018, doi: 10.1109/TASC.2017.2775584. Google Scholar
6. Chen, Y., T. Cai, X. Zhu, D. Fan, and Q. Wang, "Analysis and design of a new type of less-rare-earth hybrid-magnet motor with different rotor topologies," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, 1-6, 2020, doi: 10.1109/TASC.2020.2965879. Google Scholar
7. Chen, J. T., Z. Q. Zhu, S. Iwasaki, and R. P. Deodhar, "Influence of slot opening on optimal stator and rotor pole combination and electromagnetic performance of switched-flux PM brushless AC machines," IEEE Transactions on Industry Applications, Vol. 47, No. 4, 1681-1691, 2011, doi: 10.1109/TIA.2011.2155011. Google Scholar
8. Petrov, I., M. Niemela, P. Ponomarev, and J. Pyrhonen, "Rotor surface ferrite permanent magnets in electrical machines: Advantages and limitations," IEEE Transactions on Industrial Electronics, Vol. 64, No. 7, 5314-5322, 2017, doi: 10.1109/TIE.2017.2677320. Google Scholar
9. Vartanian, R., H. A. Toliyat, B. Akin, and R. Poley, "Power factor improvement of synchronous reluctance motors, SynRM) using permanent magnets for drive size reduction," Proceedings of Annual IEEE Applied Power Electronics Conference and Exposition, APEC), 628-633, Orlando, USA, 2012, doi: 10.1109/APEC.2012.6165884. Google Scholar
10. Zhao, W., D. Chen, T. A. Lipo, and B. I. Kwon, "Performance improvement of ferrite-assisted synchronous reluctance machines using asymmetrical rotor configurations," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, 2015, doi: 10.1109/TMAG.2015.2436414. Google Scholar
11. Jung, Y. H., M. R. Park, K. O. Kim, J. W. Chin, J. P. Hong, and M. S. Lim, "Design of high-speed multilayer IPMSM using ferrite PM for EV traction considering mechanical and electrical characteristics," IEEE Transactions on Industry Applications, Vol. 57, No. 1, 327-329, 2021, doi: 10.1109/TIA.2020.3033783. Google Scholar
12. Huang, H., Y. S. Hu, Y. Xiao, and H. Lyu, "Research of parameters and antidemagnetization of rare-earth-less permanent magnet-assisted synchronous reluctance motor," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, 2015, doi: 10.1109/TMAG.2015.2445934. Google Scholar
13. Zhu, X., S. Yang, Y. Du, Z. Xiang, and L. Xu, "Electromagnetic performance analysis and verification of a new flux-intensifying permanent magnet brushless motor with two-layer segmented permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016, doi: 10.1109/TMAG.2016.2519465. Google Scholar
14. Kim, K. H., H. I. Park, S. M. Jang, D. J. You, and J. Y. Choi, "Comparative study of electromagnetic performance of high-speed synchronous motors with rare-earth and ferrite permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016, doi: 10.1109/TMAG.2016.2532901. Google Scholar
15. Awah, C. C., "Effect of permanent magnet material on the electromagnetic performance of switched-flux permanent magnet machine," Electrical Engineering, Vol. 103, No. 3, 1647-1660, 2021, doi: https://doi.org/10.1007/s00202-020-01155-8. Google Scholar
16. El-Refaie, A., "Role of advanced materials in electrical machines," CES Transactions on Electrical Machines and Systems, Vol. 3, No. 2, 124-132, 2019, doi: 10.30941/CESTEMS.2019.00018. Google Scholar
17. Tahanian, H., M. Aliahmadi, and J. Faiz, "Ferrite permanent magnets in electrical machines: opportunities and challenges of a non-rare-earth alternative," IEEE Transactions on Magnetics, Vol. 56, No. 3, 1-20, 2020, doi: 10.1109/TMAG.2019.2957468. Google Scholar
18. Xu, H., J. Li, J. Chen, Y. Lu, and M. Ge, "Analysis of a hybrid permanent magnet variable-flux machine for electric vehicle tractions considering magnetizing and demagnetizing current," IEEE Transactions on Industry Applications, Vol. 57, No. 6, 5983-5992, 2021, doi: 10.1109/TIA.2021.3115077. Google Scholar
19. Liu, X., H. Chen, J. Zhao, and A. Belahcen, "Research on the performances and parameters of interior PMSM used for electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3533-3545, 2016, doi: 10.1109/TIE.2016.2524415. Google Scholar
20. Zhu, Z. Q., D. Ishak, D. Howe, and J. Chen, "Unbalanced magnetic forces in permanent-magnet brushless machines with diametrically asymmetric phase windings," IEEE Transactions on Industry Applications, Vol. 43, No. 6, 1544-1553, 2007, doi: 10.1109/IAS.2005.1518484. Google Scholar
21. Barcaro, M., N. Bianchi, and F. Magnussen, "Six-phase supply feasibility using a PM fractional-slot dual winding machine," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2042-2050, 2011, doi: 10.1109/TIA.2011.2161859. Google Scholar
22. Thomas, A. S., Z. Q. Zhu, R. L. Owen, G. W. Jewell, and D. Howe, "Multiphase flux-switching permanent-magnet brushless machine for aerospace application," IEEE Transactions on Industry Applications, Vol. 45, No. 6, 1971-1981, 2009, doi: 10.1109/TIA.2009.2031901. Google Scholar
23. Kang, M., L. Xu, J. Ji, and X. Zhu, "Design and analysis of a high torque density hybrid permanent magnet excited vernier machine," Energies, Vol. 15, No. 5, 1723, 2022, https://doi.org/10.3390/en15051723. Google Scholar
24. Hua, W. and C. Ming, "Inductance characteristics of 3-phase flux-switching permanent magnet machine with doubly-salient structure," Proceedings of IEEE International Conference on Power Electronics and Motion Control, 1-5, Shanghai, China, 2006, doi: 10.1109/IPEMC.2006.4778302. Google Scholar
25. Liu, X., G. Guo, L. Du, and W. Zhu, "Multi-objective optimal design and analysis of variable leakage flux IPM motors for improve flux-weakening ability," Progress In Electromagnetics Research C, Vol. 113, 147-160, 2021, doi: 10.2528/PIERC21042502. Google Scholar
26. Liu, X., G. Guo, S. Zhu, and J. Liang, "Design and analysis of variable leakage flux flux-intensifying motor for improve flux-weakening ability," Progress In Electromagnetics Research M, Vol. 103, 221-233, 2021, doi: 10.2528/PIERM21070204. Google Scholar