Vol. 109
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-03-28
Influence of Magnetic Remanence and Coercive Force on the Electromagnetic Output of Permanent Magnet Machine
By
Progress In Electromagnetics Research M, Vol. 109, 75-88, 2022
Abstract
The impact of permanent magnet (PM) properties such as magnetremanence and coercive force or coercivity on the electromagnetic output of flux-switching permanent magnet machine having C-core stator topology is presented and compared in this work. A two-dimensional finite-element analysis (2D-FEA) approach is implemented using ANSYS-MAXWELL software package. Three-dimensional (3D) FEA calculations are also conducted, in order to realize more accurate results, and its results are compared with the 2D-FEA predicted results. The investigated machine elements are: airgap flux-density, torque ripple, total harmonic distortion (THD) of the voltage, cogging torque, unbalanced magnetic pull (UMP) or force, winding inductances, direct- and quadrature-axis flux, electromotive force and output torque. The analyses show that undesirable qualities such as large amount of cogging torque and UMP are predominant in the machine having rare-earth magnets i.e. neodymium and samarium-cobalt, although they have larger flux linkage and superior average torque compared to its non-rare-earth magnet equivalents i.e. the ferrite- and alnico-made machines. Moreover, the alnico- and ferrite-made machines exhibit larger winding inductance values, and consequently lower saturation withstand capability, though with better field-weakening capability. Further, the predicted efficiencies of the compared machine types having alnico, ferrite, neodymium and samarium materials, at rated current and speed conditions are: 79.8%, 75.76%, 87.22% and 86.58%, respectively. More so, the generated electromagnetic output power of the compared machine types at the operating base speed is: 206.57 Watts, 186.57 Watts, 449.67 Watts and 396.40 Watts, respectively. The investigated machine is suitable for high torque in-wheel direct-drive applications.
Citation
Stephen Ejiofor Oti Chukwuemeka Chijioke Awah , "Influence of Magnetic Remanence and Coercive Force on the Electromagnetic Output of Permanent Magnet Machine," Progress In Electromagnetics Research M, Vol. 109, 75-88, 2022.
doi:10.2528/PIERM22012711
http://www.jpier.org/PIERM/pier.php?paper=22012711
References

1. Morimoto, S., S. Ooi, Y. Inoue, and M. Sanada, "Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications," IEEE Transactions on Industrial Electronics, Vol. 61, No. 10, 5749-5756, 2014, doi: 10.1109/TIE.2013.2289856.

2. Ramesh, P. and N. C. Lenin, "High power density electrical machines for electric vehicles - Comprehensive review based on material technology," IEEE Transactions on Magnetics, Vol. 55, No. 11, 1-21, 2019, doi: 10.1109/TMAG.2019.2929145.

3. Bonthu, S. S. R., A. Arafat, and S. Choi, "Comparisons of rare-earth and rare-earth free external rotor permanent magnet assisted synchronous reluctance motors," IEEE Transactions on Industrial Electronics, Vol. 64, No. 12, 9729-9738, 2017, doi: 10.1109/TIE.2017.2711580.

4. Yu, D., X. Huang, X. Zhang, J. Zhang, Q. Lu, and Y. Fang, "Optimal design of outer rotor interior permanent magnet synchronous machine with hybrid permanent magnet," IEEE Transactions Applied Superconductivity, Vol. 29, No. 2, 1-5, 2019, doi: 10.1109/TASC.2019.2895260.

5. Wu, W., X. Zhu, L. Quan, Y. Du, Z. Xiang, and X. Zhu, "Design and analysis of a hybrid permanent magnet assisted synchronous reluctance motor considering magnetic saliency and PM usage," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-6, 2018, doi: 10.1109/TASC.2017.2775584.

6. Chen, Y., T. Cai, X. Zhu, D. Fan, and Q. Wang, "Analysis and design of a new type of less-rare-earth hybrid-magnet motor with different rotor topologies," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, 1-6, 2020, doi: 10.1109/TASC.2020.2965879.

7. Chen, J. T., Z. Q. Zhu, S. Iwasaki, and R. P. Deodhar, "Influence of slot opening on optimal stator and rotor pole combination and electromagnetic performance of switched-flux PM brushless AC machines," IEEE Transactions on Industry Applications, Vol. 47, No. 4, 1681-1691, 2011, doi: 10.1109/TIA.2011.2155011.

8. Petrov, I., M. Niemela, P. Ponomarev, and J. Pyrhonen, "Rotor surface ferrite permanent magnets in electrical machines: Advantages and limitations," IEEE Transactions on Industrial Electronics, Vol. 64, No. 7, 5314-5322, 2017, doi: 10.1109/TIE.2017.2677320.

9. Vartanian, R., H. A. Toliyat, B. Akin, and R. Poley, "Power factor improvement of synchronous reluctance motors, SynRM) using permanent magnets for drive size reduction," Proceedings of Annual IEEE Applied Power Electronics Conference and Exposition, APEC), 628-633, Orlando, USA, 2012, doi: 10.1109/APEC.2012.6165884.

10. Zhao, W., D. Chen, T. A. Lipo, and B. I. Kwon, "Performance improvement of ferrite-assisted synchronous reluctance machines using asymmetrical rotor configurations," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, 2015, doi: 10.1109/TMAG.2015.2436414.

11. Jung, Y. H., M. R. Park, K. O. Kim, J. W. Chin, J. P. Hong, and M. S. Lim, "Design of high-speed multilayer IPMSM using ferrite PM for EV traction considering mechanical and electrical characteristics," IEEE Transactions on Industry Applications, Vol. 57, No. 1, 327-329, 2021, doi: 10.1109/TIA.2020.3033783.

12. Huang, H., Y. S. Hu, Y. Xiao, and H. Lyu, "Research of parameters and antidemagnetization of rare-earth-less permanent magnet-assisted synchronous reluctance motor," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, 2015, doi: 10.1109/TMAG.2015.2445934.

13. Zhu, X., S. Yang, Y. Du, Z. Xiang, and L. Xu, "Electromagnetic performance analysis and verification of a new flux-intensifying permanent magnet brushless motor with two-layer segmented permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016, doi: 10.1109/TMAG.2016.2519465.

14. Kim, K. H., H. I. Park, S. M. Jang, D. J. You, and J. Y. Choi, "Comparative study of electromagnetic performance of high-speed synchronous motors with rare-earth and ferrite permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016, doi: 10.1109/TMAG.2016.2532901.

15. Awah, C. C., "Effect of permanent magnet material on the electromagnetic performance of switched-flux permanent magnet machine," Electrical Engineering, Vol. 103, No. 3, 1647-1660, 2021, doi: https://doi.org/10.1007/s00202-020-01155-8.

16. El-Refaie, A., "Role of advanced materials in electrical machines," CES Transactions on Electrical Machines and Systems, Vol. 3, No. 2, 124-132, 2019, doi: 10.30941/CESTEMS.2019.00018.

17. Tahanian, H., M. Aliahmadi, and J. Faiz, "Ferrite permanent magnets in electrical machines: opportunities and challenges of a non-rare-earth alternative," IEEE Transactions on Magnetics, Vol. 56, No. 3, 1-20, 2020, doi: 10.1109/TMAG.2019.2957468.

18. Xu, H., J. Li, J. Chen, Y. Lu, and M. Ge, "Analysis of a hybrid permanent magnet variable-flux machine for electric vehicle tractions considering magnetizing and demagnetizing current," IEEE Transactions on Industry Applications, Vol. 57, No. 6, 5983-5992, 2021, doi: 10.1109/TIA.2021.3115077.

19. Liu, X., H. Chen, J. Zhao, and A. Belahcen, "Research on the performances and parameters of interior PMSM used for electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3533-3545, 2016, doi: 10.1109/TIE.2016.2524415.

20. Zhu, Z. Q., D. Ishak, D. Howe, and J. Chen, "Unbalanced magnetic forces in permanent-magnet brushless machines with diametrically asymmetric phase windings," IEEE Transactions on Industry Applications, Vol. 43, No. 6, 1544-1553, 2007, doi: 10.1109/IAS.2005.1518484.

21. Barcaro, M., N. Bianchi, and F. Magnussen, "Six-phase supply feasibility using a PM fractional-slot dual winding machine," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2042-2050, 2011, doi: 10.1109/TIA.2011.2161859.

22. Thomas, A. S., Z. Q. Zhu, R. L. Owen, G. W. Jewell, and D. Howe, "Multiphase flux-switching permanent-magnet brushless machine for aerospace application," IEEE Transactions on Industry Applications, Vol. 45, No. 6, 1971-1981, 2009, doi: 10.1109/TIA.2009.2031901.

23. Kang, M., L. Xu, J. Ji, and X. Zhu, "Design and analysis of a high torque density hybrid permanent magnet excited vernier machine," Energies, Vol. 15, No. 5, 1723, 2022, https://doi.org/10.3390/en15051723.

24. Hua, W. and C. Ming, "Inductance characteristics of 3-phase flux-switching permanent magnet machine with doubly-salient structure," Proceedings of IEEE International Conference on Power Electronics and Motion Control, 1-5, Shanghai, China, 2006, doi: 10.1109/IPEMC.2006.4778302.

25. Liu, X., G. Guo, L. Du, and W. Zhu, "Multi-objective optimal design and analysis of variable leakage flux IPM motors for improve flux-weakening ability," Progress In Electromagnetics Research C, Vol. 113, 147-160, 2021, doi: 10.2528/PIERC21042502.

26. Liu, X., G. Guo, S. Zhu, and J. Liang, "Design and analysis of variable leakage flux flux-intensifying motor for improve flux-weakening ability," Progress In Electromagnetics Research M, Vol. 103, 221-233, 2021, doi: 10.2528/PIERM21070204.