Vol. 103
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-04-15
Stripline Fed Slotted Edge Balanced Antipodal Vivaldi Antenna for Advanced Radar Applications
By
Progress In Electromagnetics Research Letters, Vol. 103, 119-126, 2022
Abstract
A compact exponentially tapered balanced antipodal Vivaldi antenna for Phased array systems is proposed in this paper. The proposed design implements slots at the edges to improve impedance bandwidth typically at lower frequencies. The antenna is coupled to a 50 Ω microstrip line between the signal conductors of the middle layer and ground plane. A detailed parametric analysis has been carried out to determine the optimized dimensions and to achieve desired antenna performance. A prototype of the antenna (56×28×1.6 mm3) was fabricated and measured to validate the simulation results. It is revealed that the antenna has a wide impedance bandwidth of 120% over 5-20 GHz and measured gain of the antenna increases from 2.6 dB to 8.0 dB in the whole operational frequency band. The small aperture width which is typically 28 mm is the attractive feature of the proposed design. Therefore, compact size, high gain, ultrawide bandwidth, and directional radiation characteristics of the proposed design may be suitable for advance radar systems.
Citation
Kambham Premchand, Harikrishna Paik, and Shailendra Kumar Mishra, "Stripline Fed Slotted Edge Balanced Antipodal Vivaldi Antenna for Advanced Radar Applications," Progress In Electromagnetics Research Letters, Vol. 103, 119-126, 2022.
doi:10.2528/PIERL22012806
References

1. ShahzadSadiq, M., M. W. Niaz, S. Zheng, and L. Zhao, "Equal beamwidth and low sidelobe mm-wave horn antenna," 2018 Asia Paci c Microwave Conference (APMC), 1579-1581, Kyoto, Japan, 2018.

2. Serhir, M. and D. Lesselier, "Wideband reflector-backed folded bowtie antenna for ground penetrating radar," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1056-1063, 2018.
doi:10.1109/TAP.2017.2786295

3. Elsherbini, A. and K. Sarabandi, "Compact directive ultra-wideband rectangular waveguide based antenna for radar and communication applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2203-2209, 2012.
doi:10.1109/TAP.2012.2189727

4. Guo, J., J. Tong, Q. Zhao, J. Jiao, J. Huo, and C. Ma, "An ultrawide band antipodal Vivaldi antenna for airborne GPR application," IEEE Geoscience and Remote Sensing Letters, Vol. 16, No. 10, 1560-1564, 2019.
doi:10.1109/LGRS.2019.2905013

5. Wang, N., M. Fang, Z. Qiu, and L. Xiao, "Improved design of balanced antipodal Vivaldi for MMW applications," 2017 IEEE International Symposium on Antenna and Propagation & UNSC/URSI National Radio Science Meeting, 2615-2616, San Diego, CA, USA, 2017.

6. Bourqui, J., M. Okoniewski, and C. Elise Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2318-2326, 2010.
doi:10.1109/TAP.2010.2048844

7. Wang, N.-N., M. Fang, H.-T. Chou, J.-R. Qi, and L.-Y. Xiao, "Balanced antipodal Vivaldi antenna with asymmetric substrate cutout and dual-scale slotted edges for ultra-wideband operation at millimeter-wave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3724-3729, 2018.
doi:10.1109/TAP.2018.2820422

8. Natarajan, R., J. V. George, M. Kanagasabai, and A. K. Shrivastav, "A compact antipodal Vivaldi antenna for UWB applications," IEEEAntennas and Wireless Propagation Letters, Vol. 14, 1557-1560, 2015.
doi:10.1109/LAWP.2015.2412255

9. Geng, D., D. Yang, H. Xiao, Y. Chen, and J. Pan, "A novel miniaturized vivaldi antenna for ultra-wideband applications," Progress In Electromagnetics Research C, Vol. 77, 123-131, 2017.
doi:10.2528/PIERC17071605

10. Moosazadeh, M. and S. Kharkovsky, "A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 552-555, 2016.
doi:10.1109/LAWP.2015.2457919

11. Teni, G., N. Zhang, J. Qiu, and P. Zhang, "Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 417-420, 2013.
doi:10.1109/LAWP.2013.2253592

12. Oliveira, A. M. D., M. B. Perotoni, S. T. Kofuji, and J. F. Justo, "A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1334-1337, 2015.
doi:10.1109/LAWP.2015.2404875

13. Yin, Z. F., X. X. Yang, and T. Lou, "A high gain UWB Vivaldi antenna loaded with elliptical slots," 2018 International Applied Computational Electromagnetics Society Symposium(ACES), 1-4, Beijing, China, 2019.