Vol. 105
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-08-01
Efficient Broadband Power Amplifier Using Klopfenstein Taper as Output Matching Network
By
Progress In Electromagnetics Research Letters, Vol. 105, 103-109, 2022
Abstract
An efficient 0.6-4.2 GHz GaN-HEMT power amplifier based on Klopfenstein taper is proposed in this letter. A method based on source-pull/load-pull simulation has been used to find the optimum source and load impedances across the broad band. Then the Klopfenstein taper is studied and adopted for the output matching circuit design to achieve broadband performance. The measured results show that our proposed power amplifier has a fractional bandwidth of 150%, with saturated output power ranging from 39.45 to 42.32 dBm, power added efficiency from 45.1% to 64.8%, and over 9 dB gain at the whole working band of 0.6-4.2 GHz. The fabricated power amplifier can cover most of the wireless communication frequency bands.
Citation
Duo-Wei Liu, Fei Cheng, Chao Gu, and Ka-Ma Huang, "Efficient Broadband Power Amplifier Using Klopfenstein Taper as Output Matching Network," Progress In Electromagnetics Research Letters, Vol. 105, 103-109, 2022.
doi:10.2528/PIERL22030201
References

1. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Dual-band RF circuits and components for multi-standard software defined radios," IEEE Circuits and Systems Magazine, Vol. 2, No. 1, 12-32, Firstquarter 2012.
doi:10.1109/MCAS.2011.2181074

2. Zhang, Z., Z. Cheng, H. Ke, and G. Liu, "A broadband high-efficiency power amplifier by using branch line coupler," IEEE Microw. Wireless Compon. Lett., Vol. 30, No. 9, 880-883, Sept. 2020.
doi:10.1109/LMWC.2020.3014222

3. Poluri, N. and M. M. De Souza, "Designing a broadband amplifier without load-pull," IEEE Microw. Wireless Compon. Lett., Vol. 31, No. 6, 593-596, Jun. 2021.
doi:10.1109/LMWC.2021.3061804

4. Wright, P., J. Lees, P. J. Tasker, J. Benedikt, and S. C. Cripps, "An efficient, linear, broadband class-J-mode PA realised using RF waveform engineering," 2009 IEEE MTT-S International Microwave Symposium Digest, 653-656, 2009.
doi:10.1109/MWSYM.2009.5165781

5. Canning, T., P. J. Tasker, and S. C. Cripps, "Continuous mode power amplifier design using harmonic clipping contours: Theory and practice," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 1, 100-110, Jan. 2014.
doi:10.1109/TMTT.2013.2292675

6. Dai, Z., S. He, J. Peng, C. Huang, W. Shi, and J. Pang, "A semianalytical matching approach for power amplifier with extended Chebyshev function and real frequency technique," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 10, 3892-3902, Oct. 2017.
doi:10.1109/TMTT.2017.2687899

7. Pozar, D. M., Microwave Engineering, Wiley, New York, 2011.

8. Zhang, Z. and Z. Cheng, "A multi-octave power amplifier based on mixed continuous modes," IEEE Access, Vol. 7, 178201-178208, 2019.
doi:10.1109/ACCESS.2019.2957926

9. Chen, H., J.-X. Xu, Z.-H. Kong, W.-H. Chen, and X. Y. Zhang, "Broadband high-efficiency power amplifier with quasi-elliptic low-pass response," IEEE Access, Vol. 8, 52566-52574, 2020.
doi:10.1109/ACCESS.2020.2980688