1. Sievenpiper, P., L. Zhang, R. F. J Broas, et al. "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999, DOI: 10.1109/22.798001.
doi:10.1109/22.798001 Google Scholar
2. Alibakhshikenari, M., et al. "Surface wave reduction in antenna arrays using metasurface inclusion for MIMO and SAR systems," Radio Science, Vol. 54, No. 11, 1067-1075, 2019.
doi:10.1029/2019RS006871 Google Scholar
3. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Study on isolation and radiation behaviours of a 34 × 34 array-antennas based on SIW and metasurface properties for applications in terahertz and over 125-300 GHz," Optik, Vol. 206, Art. No. 163222, Mar. 2020. Google Scholar
4. Alibakhshikenari, M., B. S. Virdee, P. Shukla, et al. "Metamaterial-Inspired antenna array for application in Microwave breast imaging systems for tumor detection," IEEE Access, Vol. 8, 174667-174678, 2020.
doi:10.1109/ACCESS.2020.3025672 Google Scholar
5. Ge, Y., Y. J. Zhao, and J. Q. Chen, "Wideband RCS reduction and gain enhancement for a patch antenna with broadband AMC structure," Radio Engineering, Vol. 2, No. 1, 45-52, 2019. Google Scholar
6. Ren, Y., X. Guo, and C. Li, "Broadband circular polarized antenna loaded with AMC structure," Progress In Electromagnetics Research Letters, Vol. 76, 113-119, 2018.
doi:10.2528/PIERL18032002 Google Scholar
7. Sang, X.-Y., C. Yang, T.-L. Zhang, Z.-H. Yan, and R.-N. Lian, "Broadband and gain enhanced bowtie antenna with AMC ground," Progress In Electromagnetics Research Letter, Vol. 61, 25-30, 2016.
doi:10.2528/PIERL16042606 Google Scholar
8. Li, M., Q. L. Li, B. Wang, C. F. Zhou, and S. W. Cheung, "A low-profile dual-polarized dipole antenna using wideband AMC re ector," IEEE Trans. Antennas Propagation, Vol. 66, No. 5, 2610-2615, May 2018.
doi:10.1109/TAP.2018.2806424 Google Scholar
9. Volkov, A. P., V. V. Kakshin, I. Yu. Ryzhov, K. V. Kozlov, and A. Yu. Grinev, "Wideband low-profile dual-polarized antenna with AMC re ector," Progress In Electromagnetics Research Letter, Vol. 88, 15-20, 2020.
doi:10.2528/PIERL19100709 Google Scholar
10. Ta, S. X. and I. Park, "Dual-band low-profile crossed asymmetric dipole antenna on dual-band AMC structure," IEEE Antennas Wireless Propagation Lett., Vol. 13, 587-590, 2014. Google Scholar
11. Chamani, Z. and S. Jahanbakht, "Improved performance of double-T monopole antenna for 2.4/5.6 GHz dual-band WLAN operation using artificial magnetic conductors," Progress In Electromagnetics Research M, Vol. 61, 205-213, 2017.
doi:10.2528/PIERM17090301 Google Scholar
12. Kumar, P. and D. Ghosh, "High-gain dual-band antenna with AMC surface for satellite communications," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 5, 604-619, Nov. 2020. Google Scholar
13. Sarrazin, J., A. C. Lepage, and X. Begaud, "Dual-band artificial magnetic conductor," Appl. Phys. A, Vol. 109, No. 4, 1075-1080, 2012.
doi:10.1007/s00339-012-7409-1 Google Scholar
14. Dewan, R., S. K. A. Rahim, S. F. Ausordin, and H. U. Iddi, "Design of triple band artificial magnetic conductor," IEEE Asia-Pacific Conference on Applied Electromagnetics, 253-256, 2012. Google Scholar
15. Fneish, Z., F. Mazeh, H. Ayad, A. A. Khalil, G. Faour, M. Fadlallah, and J. Jomaah, "Design of a miniaturized dual wide band and triband artificial magnetic conductor in LTE regions," 2017 Sensors Networks Smart and Emerging Technologies (SENSET), 978-1-5090-601, IEEE, 2017. Google Scholar
16. Ghosh, A., T. Mandal, and S. Das, "Design of triple band slot-patchantenna with improved gain using triple band artificial magnetic conductor," Radio Engineering, Vol. 25, No. 3, 442-448, 2016. Google Scholar
17. Ghosh, A., V. Kumar, G. Sen, and S. Das, "Gain enhancement of triple-band patch antenna by using triple-band artificial magnetic conductor," IET Microwaves, Antennas & Propagation, Vol. 12, No. 8, 1400-1406, 2018.
doi:10.1049/iet-map.2017.0815 Google Scholar
18. Ihsan, R. R. and A. Munir, "Utilization of artificial magnetic conductor for bandwidth enhancement of square patch antenna," 7th International Conference on Telecommunication Systems, Services and Applications, 192-195, Bali, Indonesia, 2012, DOI: 10.1109/TSSA.2012.6366049. Google Scholar
19. Capolino, F., Theory and Phenomena of Metamaterials, Chapter 32, 32-1, Taylor & Francis, 2009.
20. Suraperwata, A. V., L. Olivia, and A. Munir, "Inductance and capacitance reformulation of square patch-based artificial magnetic conductor," Proc. 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 187-191, 2012. Google Scholar