Vol. 103
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-04-22
Broadband Phase Shifter with Constant Phase Based on Negative Group Delay Circuit
By
Progress In Electromagnetics Research Letters, Vol. 103, 161-169, 2022
Abstract
A broadband phase shifter (PS) with a constant phase based on a negative group delay (NGD) microwave circuit is proposed. The presented broadband PS is composed of distributed microstrip lines and two resistors, which is based on the positive group delay compensation principle. By tuning the electrical length of the phase shift transmission line, the constant phase can be obtained in the range of -360° ~ 0°. For verification, three broadband PSs with the phase shift of -90°, -180°, and -270° (90°) are designed, fabricated, and measured at the center frequency of 1.0 GHz. The measurements show that the -90° PS can achieve a constant phase of -90°±3.0° with a fractional bandwidth (FBW) of 73.1%; the -180° PS can achieve a constant phase of -180°±5.0° with an FBW of 51.1%; and the -270° PS can achieve a constant phase of -270°±4.0° with an FBW of 40.4%. Besides, the return loss is greater than 13.6 dB in the flat-phase bands.
Citation
Yuwei Meng, Zhongbao Wang, Shao-Jun Fang, and Hongmei Liu, "Broadband Phase Shifter with Constant Phase Based on Negative Group Delay Circuit," Progress In Electromagnetics Research Letters, Vol. 103, 161-169, 2022.
doi:10.2528/PIERL22031301
References

1. Lucyszyn, S., I. D. Robertson, and A. H. Aghvami, "Negative group delay synthesiser," Electron. Lett., Vol. 29, No. 9, 798-800, Apr. 1993.
doi:10.1049/el:19930533        Google Scholar

2. Wang, Z., Y. Cao, T. Shao, S. Fang, and Y. Liu, "A negative group delay microwave circuit based on signal interference techniques," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 4, 290-292, Apr. 2018.
doi:10.1109/LMWC.2018.2811254        Google Scholar

3. Chaudhary, G., Y. Jeong, and J. Lim, "Microstrip line negative group delay lters for microwave circuits," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 2, 234-243, Feb. 2014.
doi:10.1109/TMTT.2013.2295555        Google Scholar

4. Wan, F., N. Li, B. Ravelo, J. Ge, and B. Li, "Time-domain experimentation of NGD active RC-network cell," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 66, No. 4, 562-566, Apr. 2019.
doi:10.1109/TCSII.2018.2870836        Google Scholar

5. Wan, F., N. Li, B. Ravelo, and J. Ge, "O = O shape low-loss negative group delay microstrip circuit," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 67, No. 10, 1795-1799, Oct. 2020.
doi:10.1109/TCSII.2019.2955109        Google Scholar

6. Wan, F., X. Miao, B. Ravelo, et al. "Design of multi-scale negative group delay circuit for sensors signal time-delay cancellation," IEEE Sens. J., Vol. 19, No. 19, 8951-8962, Oct. 2019.
doi:10.1109/JSEN.2019.2921834        Google Scholar

7. Joeng, J., G. Chaudhary, and Y. Jeong, "Efficiency enhancement of cross cancellation power amplifier using negative group delay circuit," Microw. Opt. Techn. Let., Vol. 61, No. 7, 1673-1677, Nov. 2019.
doi:10.1002/mop.31765        Google Scholar

8. Zhang, T. and T. Yang, "A novel fully reconfigurable non foster capacitance using distributed negative group delay networks," IEEE Access, Vol. 7, 92768-92777, Jul. 2019.        Google Scholar

9. Zhu, M. and C. Wu, "Reconfigurable non-foster elements and squint-free beamforming networks using active transversal filter-based negative group delay circuit," IEEE Trans. Microw. Theory Techn., Vol. 70, No. 1, 222-231, Jan. 2022.
doi:10.1109/TMTT.2021.3074577        Google Scholar

10. Ravelo, B., M. L. Roy, and Andre Perennec, "Application of negative group delay active circuits to the design of broadband and constant phase shifters," Microw. Opt. Techn. Lett., Vol. 50, No. 12, 3078-3080, Mar. 2008.
doi:10.1002/mop.23883        Google Scholar

11. Ravelo, B., Andre Perennec, and M. L. Roy, "Synthesis of frequency-independent phase shifters using negative group delay active circuit," Int. J. RF Microwave Comput. Aided Eng., Vol. 21, No. 1, 17-24, Dec. 2010.
doi:10.1002/mmce.20482        Google Scholar

12. Nebhen, J. and B. Ravelo, "Innovative microwave design of frequency-independent passive phase shifter with LCL-network and bandpass NGD circuit," Progress In Electromagnetics Research C, Vol. 109, 187-203, 2021.
doi:10.2528/PIERC21010201        Google Scholar

13. Peng, Y. and L. Sun, "A Compact broadband phase shifter based on HMSIW evanescent mode," IEEE Microw. Wireless Compon. Lett., Vol. 31, No. 7, 857-860, Jul. 2021.
doi:10.1109/LMWC.2021.3077379        Google Scholar

14. Lyu, Y. P., L. Zhu, and C. H. Cheng, "Wideband phase shifters with miniaturized size on multiple series and shunt resonators: proposal and synthetic design," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 12, 5221-5234, Dec. 2020.        Google Scholar

15. Bo, W. X., Y. Z. Shao, M. P. Yong, et al. "A universal reference line-based differential phase shifter structure with simple design formulas," IEEE Trans. Compon. Packag. Technol., Vol. 7, No. 1, 123-130, Dec. 2016.        Google Scholar

16. Lyu, Y. P., L. Zhu, and C. H. Cheng, "Proposal and synthesis design of differential phase shifters with filtering function," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 8, 2906-2917, Aug. 2017.
doi:10.1109/TMTT.2017.2673819        Google Scholar

17. Guo, L., H. Zhu, and A. Abbosh, "Wideband phase shifter with wide phase range using parallel coupled lines and L-shaped networks," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 8, 592-594, Aug. 2016.
doi:10.1109/LMWC.2016.2587833        Google Scholar

18. Lyu, Y. P., L. Zhu, and C. H. Cheng, "Design and analysis of Schiffman phase shifter under operation of its second phase period," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 7, 3263-3269, Jul. 2018.
doi:10.1109/TMTT.2018.2829170        Google Scholar

19. Yu, X., S. Sun, X. Jing, et al. "Design of ultraflat phase shifters using multiple quarter-wavelength short-ended stubs," IEEE Microw. Wireless Compon. Lett., Vol. 29, No. 4, 246-248, Apr. 2019.
doi:10.1109/LMWC.2019.2898780        Google Scholar

20. Qiu, L. L., L. Zhu, and Y. P. Lyu, "Schiffman phase shifters with wide phase shift range under operation of first and second phase periods in a coupled line," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 4, 1423-1430, Apr. 2020.
doi:10.1109/TMTT.2019.2953842        Google Scholar

21. Aboul-Seoud, A. K., A. Hamed, and A. E.-D. S. Hafez, "Wideband tunable MEMS phase shifters for radar phased array antenna," 29th Nat. Radio Sci. Conf. (NRSC), 593-599, Apr. 2012.
doi:10.1109/NRSC.2012.6208570        Google Scholar

22. Meng, Y., Z. Wang, S. Fang, T. Shao, H. Liu, and Z. Chen, "Group delay flatness and bandwidth enhancement of wideband negative group delay microwave circuit," Int. J. RF Microwave Comput. Aided Eng., Vol. 30, No. 12, 1-14, Sep. 2020.
doi:10.1002/mmce.22443        Google Scholar

23. Wang, Z., Y. Meng, S. Fang, and H. Liu, "Wideband at negative group delay circuit with improved signal attenuation," IEEE Trans. Circuits Syst. II, Exp. Briefs, early access, Mar. 2022, DOI: 10.1109/TCSII.2022.3156537.        Google Scholar