1. Lucyszyn, S., I. D. Robertson, and A. H. Aghvami, "Negative group delay synthesiser," Electron. Lett., Vol. 29, No. 9, 798-800, Apr. 1993.
doi:10.1049/el:19930533 Google Scholar
2. Wang, Z., Y. Cao, T. Shao, S. Fang, and Y. Liu, "A negative group delay microwave circuit based on signal interference techniques," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 4, 290-292, Apr. 2018.
doi:10.1109/LMWC.2018.2811254 Google Scholar
3. Chaudhary, G., Y. Jeong, and J. Lim, "Microstrip line negative group delay lters for microwave circuits," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 2, 234-243, Feb. 2014.
doi:10.1109/TMTT.2013.2295555 Google Scholar
4. Wan, F., N. Li, B. Ravelo, J. Ge, and B. Li, "Time-domain experimentation of NGD active RC-network cell," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 66, No. 4, 562-566, Apr. 2019.
doi:10.1109/TCSII.2018.2870836 Google Scholar
5. Wan, F., N. Li, B. Ravelo, and J. Ge, "O = O shape low-loss negative group delay microstrip circuit," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 67, No. 10, 1795-1799, Oct. 2020.
doi:10.1109/TCSII.2019.2955109 Google Scholar
6. Wan, F., X. Miao, B. Ravelo, et al. "Design of multi-scale negative group delay circuit for sensors signal time-delay cancellation," IEEE Sens. J., Vol. 19, No. 19, 8951-8962, Oct. 2019.
doi:10.1109/JSEN.2019.2921834 Google Scholar
7. Joeng, J., G. Chaudhary, and Y. Jeong, "Efficiency enhancement of cross cancellation power amplifier using negative group delay circuit," Microw. Opt. Techn. Let., Vol. 61, No. 7, 1673-1677, Nov. 2019.
doi:10.1002/mop.31765 Google Scholar
8. Zhang, T. and T. Yang, "A novel fully reconfigurable non foster capacitance using distributed negative group delay networks," IEEE Access, Vol. 7, 92768-92777, Jul. 2019. Google Scholar
9. Zhu, M. and C. Wu, "Reconfigurable non-foster elements and squint-free beamforming networks using active transversal filter-based negative group delay circuit," IEEE Trans. Microw. Theory Techn., Vol. 70, No. 1, 222-231, Jan. 2022.
doi:10.1109/TMTT.2021.3074577 Google Scholar
10. Ravelo, B., M. L. Roy, and Andre Perennec, "Application of negative group delay active circuits to the design of broadband and constant phase shifters," Microw. Opt. Techn. Lett., Vol. 50, No. 12, 3078-3080, Mar. 2008.
doi:10.1002/mop.23883 Google Scholar
11. Ravelo, B., Andre Perennec, and M. L. Roy, "Synthesis of frequency-independent phase shifters using negative group delay active circuit," Int. J. RF Microwave Comput. Aided Eng., Vol. 21, No. 1, 17-24, Dec. 2010.
doi:10.1002/mmce.20482 Google Scholar
12. Nebhen, J. and B. Ravelo, "Innovative microwave design of frequency-independent passive phase shifter with LCL-network and bandpass NGD circuit," Progress In Electromagnetics Research C, Vol. 109, 187-203, 2021.
doi:10.2528/PIERC21010201 Google Scholar
13. Peng, Y. and L. Sun, "A Compact broadband phase shifter based on HMSIW evanescent mode," IEEE Microw. Wireless Compon. Lett., Vol. 31, No. 7, 857-860, Jul. 2021.
doi:10.1109/LMWC.2021.3077379 Google Scholar
14. Lyu, Y. P., L. Zhu, and C. H. Cheng, "Wideband phase shifters with miniaturized size on multiple series and shunt resonators: proposal and synthetic design," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 12, 5221-5234, Dec. 2020. Google Scholar
15. Bo, W. X., Y. Z. Shao, M. P. Yong, et al. "A universal reference line-based differential phase shifter structure with simple design formulas," IEEE Trans. Compon. Packag. Technol., Vol. 7, No. 1, 123-130, Dec. 2016. Google Scholar
16. Lyu, Y. P., L. Zhu, and C. H. Cheng, "Proposal and synthesis design of differential phase shifters with filtering function," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 8, 2906-2917, Aug. 2017.
doi:10.1109/TMTT.2017.2673819 Google Scholar
17. Guo, L., H. Zhu, and A. Abbosh, "Wideband phase shifter with wide phase range using parallel coupled lines and L-shaped networks," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 8, 592-594, Aug. 2016.
doi:10.1109/LMWC.2016.2587833 Google Scholar
18. Lyu, Y. P., L. Zhu, and C. H. Cheng, "Design and analysis of Schiffman phase shifter under operation of its second phase period," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 7, 3263-3269, Jul. 2018.
doi:10.1109/TMTT.2018.2829170 Google Scholar
19. Yu, X., S. Sun, X. Jing, et al. "Design of ultraflat phase shifters using multiple quarter-wavelength short-ended stubs," IEEE Microw. Wireless Compon. Lett., Vol. 29, No. 4, 246-248, Apr. 2019.
doi:10.1109/LMWC.2019.2898780 Google Scholar
20. Qiu, L. L., L. Zhu, and Y. P. Lyu, "Schiffman phase shifters with wide phase shift range under operation of first and second phase periods in a coupled line," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 4, 1423-1430, Apr. 2020.
doi:10.1109/TMTT.2019.2953842 Google Scholar
21. Aboul-Seoud, A. K., A. Hamed, and A. E.-D. S. Hafez, "Wideband tunable MEMS phase shifters for radar phased array antenna," 29th Nat. Radio Sci. Conf. (NRSC), 593-599, Apr. 2012.
doi:10.1109/NRSC.2012.6208570 Google Scholar
22. Meng, Y., Z. Wang, S. Fang, T. Shao, H. Liu, and Z. Chen, "Group delay flatness and bandwidth enhancement of wideband negative group delay microwave circuit," Int. J. RF Microwave Comput. Aided Eng., Vol. 30, No. 12, 1-14, Sep. 2020.
doi:10.1002/mmce.22443 Google Scholar
23. Wang, Z., Y. Meng, S. Fang, and H. Liu, "Wideband at negative group delay circuit with improved signal attenuation," IEEE Trans. Circuits Syst. II, Exp. Briefs, early access, Mar. 2022, DOI: 10.1109/TCSII.2022.3156537. Google Scholar