1. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and Waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 593-596, 2003.
doi:10.1109/TMTT.2002.807820 Google Scholar
2. Ananya, P., P. Athira, and S. Raghavan, "Miniaturized band pass filter in substrate integrated waveguide technology," International Journal of Engineering & Technology, Vol. 7, No. 3.13, 95-98, 2018.
doi:10.14419/ijet.v7i3.13.16332 Google Scholar
3. Krushna Kanth, V. and S. Raghavan, "EM design and analysis of a substrate integrated waveguide based on a frequency-selective surface for millimeter wave radar application," J. Comput. Electron., Vol. 18, 189-196, 2019.
doi:10.1007/s10825-018-1272-z Google Scholar
4. Krushna Kanth, V. and S. Raghavan, "Ultra thin wide band slot and patch FSS elements with sharp band edge characteristics," International Journal of Electronics, Vol. 107, 1365-1385, 2020.
doi:10.1080/00207217.2020.1726493 Google Scholar
5. Krushna Kanth, V. and S. Raghavan, "A novel Faraday-cage inspired FSS shield for stable resonance performance characteristics," International Journal of Electronics Letters, Vol. 8, 60-69, 2020.
doi:10.1080/21681724.2018.1545926 Google Scholar
6. Hamidkhani, M., R. Sadeghi, and M. Karimi, "Dual-band high Q-factor complementary split-ring resonators using substrate integrated waveguide method and their applications," Journal of Electrical and Computer Engineering, Vol. 2019, 11, 2019. Google Scholar
7. Hao, Z., K. Wei, and W. Wen, "Dual-band substrate integrated waveguide bandpass filter utilizing complementary split ring resonators," Electronics Letters, Vol. 54, 85-87, 2018. Google Scholar
8. Park, W.-Y. and S. Lim, "Bandwidth tunable and compact BandPass Filter (BPF) using Complementary Split Ring Resonators (CSRRS) on Substrate Integrated Waveguide (SIW)," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2407-2417, 2010.
doi:10.1163/156939310793675727 Google Scholar
9. Li, D., J.-A. Wang, Y. Yu, Y. Liu, Z. Chen, and L. Yang, "Substrate integrated waveguide-based complementary split-ring resonator and its arrays for compact dual-wideband bandpass filter design," Int. J. RF Microw. Comput. Aided Eng., Vol. 31, e22504, 2021. Google Scholar
10. Chaudhury, S. S., S. Awasthi, and R. K. Singh, "Dual passband filter based on semi circular cavity substrate integrated waveguide using complementary split ring resonators," IEEE Applied Electromagnetics Conference (AEMC), 1-2, Aurangabad, India, 2017. Google Scholar
11. Yan, T. and X.-H. Tang, "Substrate integrated waveguide dual-band bandpass filter with complementary modified split-ring resonators," IEEE International Wireless Symposium (IWS 2015), 1-4, Shenzhen, China, 2015. Google Scholar
12. Geng, Q. F., H. J. Guo, Y. Y. Zhu, W. Huang, S. S. Deng, and T. Yang, "A novel dual-band filter based on single-cavity CTSRR loaded triangular substrate-integrated waveguide," International Journal of Microwave and Wireless Technologies, Vol. 11, 894-898, 2019.
doi:10.1017/S1759078719000679 Google Scholar
13. Wei, F., H. J. Yue, J.-P. Song, H. Y. Kang, and B. Li, "Half-mode SIW BPF loaded with S-shaped complementary spiral resonators," Progress In Electromagnetics Research Letters, Vol. 77, 13-18, 2018.
doi:10.2528/PIERL18032604 Google Scholar
14. Chen, X.-G., G. H. Li, Z. Shi, and S. D. Feng, "Compact SICC dual-band and UWB filters using multimode technology," Progress In Electromagnetics Research Letters, Vol. 92, 69-74, 2020.
doi:10.2528/PIERL20031902 Google Scholar
15. Zhang, Q.-J., K. C. Gupta, and V. K. Devabhaktuni, "Artificial neural networks for RF and microwave design - From theory to practice," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1339-1350, 2003.
doi:10.1109/TMTT.2003.809179 Google Scholar
16. Rayas-Sanchez, J. E., "EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 1, 420-435, Jan. 2004.
doi:10.1109/TMTT.2003.820897 Google Scholar
17. Angiulli, G., E. Arnieri, D. De Carlo, and G. Amendola, "Feed forward neural network characterization of circular SIW resonators," IEEE Antennas and Propagation Society International Symposium, 1-4, San Diego, CA, USA, 2008. Google Scholar
18. Tabatabaeian, Z. S. and M. H. Neshat, "Design investigation of an X-band SIW H-plane band pass filter with improved stop band using neural network optimization," Applied Computational Electromagnetics Society Journal, Vol. 30, No. 10, 1083-1088, 2015. Google Scholar
19. Du, G.-Y. and L. Jin, "Neural network of calibrated coarse model and application to substrate integrated waveguide filter design," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 10, e22374, 2020.
doi:10.1002/mmce.22374 Google Scholar
20. Amir, B. and B. S. Masoud, "Optimal design of double folded stub microstrip filter by neural network modelling and particle swarm optimization," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 11, 204-213, 2012. Google Scholar
21. Xiao, L., W. Shao, F. Jin, B. Wang, W. T. Joines, and Q. H. Liu, "Semi supervised radial basis function neural network with an effective sampling strategy," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, 1260-1269, 2020.
doi:10.1109/TMTT.2019.2955689 Google Scholar