1. Sun, X.-D., L. Chen, and Z.-B. Yang, "Overview of bearingless permanent-magnet synchronous motors," IEEE Trans. Ind. Electron., Vol. 60, No. 12, 55285538, 2013.
doi:10.1109/TIE.2012.2232253 Google Scholar
2. Zhu, H.-Q. and Y. Xu, "Permanent magnet parameter design and performance analysis of bearingless flux switching permanent magnet motor," IEEE Trans. Ind. Electron., Vol. 68, No. 5, 4153-4163, 2020.
doi:10.1109/TIE.2020.2984434 Google Scholar
3. Ooshima, M., S. Kobayashi, and H. Tanaka, "Magnetic suspension performance of a bearingless motor/generator for ywheel energy storage systems," IEEE Pes. General Meeting, Vol. 29, No. 18, 100-105, 2010. Google Scholar
4. Ooshima, M., S. Kitazawa, and A. Chiba, "Design and analyses of a coreless-stator type bearingless motor/generator for clean energy," IEEE INTERMAG 2006, Vol. 34, No. 9, 1360-1367, 2014. Google Scholar
5. Zhi, L., Y.-L. Xu, X.-F. Yang, and , "Generalized inverse multiplicative structure for differential- equation-based hysteresis models," IEEE Trans. Ind. Electron., Vol. 68, No. 5, 4182-4189, 2021.
doi:10.1109/TIE.2020.2982106 Google Scholar
6. Huang, H.-B., J.-H. Wu, X.-R. Huang, M.-L. Yang, and W.-P. Ding, "A generalized inverse cascade method to identify and optimize vehicle interior noise sources," Journal of Sound and Vibration, Vol. 467, 115062, 2020.
doi:10.1016/j.jsv.2019.115062 Google Scholar
7. Sun, X.-D., L. Chen, and H. Jiang, "High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers," IEEE Trans. Ind. Electron., Vol. 63, No. 6, 1-1, 2016.
doi:10.1109/TIE.2016.2530040 Google Scholar
8. Zhu, H.-Q. and W. Du, "Decoupling control of bearingless permanent magnet synchronous motor based on inverse system using the adaptive neural-fuzzy inference system," Proceedings of the CSEE, Vol. 39, No. 4, 1190-1197, 2019. Google Scholar
9. Zhu, H.-Q. and Z.-W. Gu, "Active disturbance rejection control of 5-degree-of-freedom bearingless permanent magnet synchronous motor based on fuzzy neural network inverse system," ISA Trans., Vol. 101, 2020. Google Scholar
10. Liu, G.-H. and R.-J. Chen, "Model-free adaptive robust control for two motor drive system based on neural network inversion," Proceedings of the CSEE, Vol. 39, No. 3, 868-874, 2019. Google Scholar
11. Cao, F., T. Yang, Y. Li, and S. Tong, "Adaptive neural inverse optimal control for a class of strict feedback stochastic nonlinear systems," 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), 432-436, doi: 10.1109/DDCLS.2019.8908901, 2019. Google Scholar
12. Shi, Q. and H. Zhang, "Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets," IEEE Trans. Ind. Electron., Vol. 68, No. 7, 6248-6256, 2020.
doi:10.1109/TIE.2020.2994868 Google Scholar
13. Zhao, W.-X., X.-Q. Qiu, and G.-H. Liu, "Internal model control of linear permanent-magnet vernier motor based on support vector machines generalized inverse," Control and Decision, Vol. 31, No. 8, 1419-1423, 2016. Google Scholar
14. Wang, Z.-Q. and X.-L. Huang, "Nonllinear decoupling control for bearingless induction motor based on support vector machines inversion," Transactions of China Electrotechnical Society, Vol. 30, No. 10, 164-170, 2015. Google Scholar
15. Toledo-Pérez, D. C., J. Rodríguez-Reséndiz, R. A. Gómez-Loenzo, and J. C. Jauregui-Correa, "Support vector machine-based EMG signal classification techniques: A review," Appl. Sci., Vol. 9, 4402, 2019.
doi:10.3390/app9204402 Google Scholar
16. Vapnik, V., The Nature of Statistical Learning Theory, Springer, New York, NY, 1995.
doi:10.1007/978-1-4757-2440-0
17. Suykens, J.-A.-K. and J. Vandewalle, "Recurrent least squares support vector machines," IEEE Trans. Circuits Syst. I: Fundamental Theory and Appl., Vol. 47, No. 7, 1109-1114, 2000.
doi:10.1109/81.855471 Google Scholar