Vol. 110
Latest Volume
All Volumes
PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-05-22
Integrated Waveform of Frequency Diversity Array Radar Communication Based on OFDM Random Frequency Offset Modulation
By
Progress In Electromagnetics Research M, Vol. 110, 145-156, 2022
Abstract
The integration of radar and communication has always been one of the cross-research hotspots in the field of radar and communication. In order to solve the problems of integration signal separation and the angle-distance coupling, this paper proposes a radar and communication integrated waveform based on random Orthogonal Frequency Division Multiplexing (OFDM) frequency offset modulation for Frequency Diversity Array (FDA). This waveform directly loads OFDM symbols to the elements of FDA, and each element carries a complete OFDM symbol with different information. Random frequency offsets are added between the elements to separate different signal of different elements, which can solve the problem of signal separation and form decoupled radar beam. After transmitting and receiving a series of the waveform, the transmission of communication data and the positioning of radar targets can be completed at the same time. The simulation results show that the waveform not only solves the problem of separating and uncoupling the integrated signal, but also improves the frequency band utilization rate and information transmission rate of the radar communication integrated system.
Citation
Kefei Liao, Jing Zhang, Haitao Wang, Shan Ouyang, and Ningbo Xie, "Integrated Waveform of Frequency Diversity Array Radar Communication Based on OFDM Random Frequency Offset Modulation," Progress In Electromagnetics Research M, Vol. 110, 145-156, 2022.
doi:10.2528/PIERM22032602
References

1. Ma, D., N. Shlezinger, T. Huang, Y. Shavit, M. Namer, Y. Liu, and Y. C. Eldar, "Spatial modulation for joint radar-communications systems: Design, analysis, and hardware prototype," IEEE Transactions on Vehicular Technology, Vol. 70, No. 3, 2283-2298, 2021.
doi:10.1109/TVT.2021.3056408

2. He, Q., Z. Wang, J. Hu, and R. S. Blum, "Performance gains from cooperative MIMO radar and MIMO communication systems," IEEE Signal Processing Letters, Vol. 26, No. 1, 194-198, 2019.
doi:10.1109/LSP.2018.2880836

3. Cao, N., Y. Chen, X. Gu, and W. Feng, "Joint bi-static radar and communications designs for intelligent transportation," IEEE Transactions on Vehicular Technology, Vol. 69, No. 10, 13060-13071, 2020.
doi:10.1109/TVT.2020.3020218

4. Liu, X., T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, "Joint transmit beamforming for multiuser MIMO communications and MIMO radar," IEEE Transactions on Signal Processing, Vol. 68, 3929-3944, 2020.
doi:10.1109/TSP.2020.3004739

5. Chen, X. B., Z. P. Liu, Y. M. Liu, and Z. W. Wang, "Energy leakage analysis of the radar and communication integrated waveform," IET Signal Processing, Vol. 12, No. 3, 375-382, 2018.
doi:10.1049/iet-spr.2017.0248

6. Farhang-Boroujeny, B., "OFDM versus filter bank multicarrier," IEEE Signal Processing Magazine, Vol. 28, No. 3, 92-112, 2011.
doi:10.1109/MSP.2011.940267

7. Nusenu, S. Y., H. Chen, and W. Q. Wang, "OFDM chirp radar for adaptive target detection in low grazing angle," IET Signal Processing, Vol. 12, No. 5, 613-619, 2018.
doi:10.1049/iet-spr.2017.0329

8. Li, M. J., W. Q. Wang, and Z. Zheng, "Communication-embedded OFDM chirp waveform for delay-Doppler radar," IET Radar Sonar and Navigation, Vol. 12, No. 3, 353-360, 2018.
doi:10.1049/iet-rsn.2017.0369

9. Zhang, Q. Z., Y. Zhou, L. R. Zhang, Y. B. Gu, and J. Zhang, "Waveform design for a dual-function radar-communication system based on CE-OFDM-PM signal," IET Radar Sonar and Navigation, Vol. 13, No. 4, 566-572, 2019.
doi:10.1049/iet-rsn.2018.5260

10. Antonik, P., M. C. Wicks, H. D. Griffiths, and C. J. Baker, "Frequency diverse array radars," IEEE Conference on Radar, 215-217, New York, 2006.

11. Basit, A., W. Khan, S. Khan, and I. M. Qureshi, "Development of frequency diverse array radar technology: A review," IET Radar Sonar and Navigation, Vol. 12, No. 2, 165-175, 2018.
doi:10.1049/iet-rsn.2017.0207

12. Chen, H., W. Q. Wang, and W. Wang, "Mixed targets localization using symmetric nested frequency diverse array radar," IET Signal Processing, Vol. 15, No. 1, 1-13, 2021.
doi:10.1049/sil2.12009

13. Wang, W. Q., "Retrodirective frequency diverse array focusing for wireless information and power transfer," IEEE Journal on Selected Areas in Communications, Vol. 37, No. 1, 61-73, 2019.
doi:10.1109/JSAC.2018.2872360

14. Hu, Y. Q., H. Chen, S. L. Ji, and W. Q.Wang, "Ambient backscatter communication with frequency diverse array for enhanced channel capacity and detection performance," IEEE Sensors Journal, Vol. 20, No. 17, 10876-10885, 2020.
doi:10.1109/JSEN.2020.2993843

15. Qiu, B., L. Wang, J. Xie, Z. Zhang, Y. Wang, and M. Tao, "Multi-beam index modulation with cooperative legitimate users schemes based on frequency diverse array," IEEE Transactions on Vehicular Technology, Vol. 69, No. 10, 11028-11041, 2020.
doi:10.1109/TVT.2020.3007003

16. Ding, Y., J. Zhang, and V. Fusco, "Frequency diverse array OFDM transmitter for secure wireless communication," IET Electronics Letters, Vol. 51, No. 16, 1374-1376, 2015.
doi:10.1049/el.2015.1491

17. Nusenu, S. Y. and W. Wang, "Range-dependent spatial modulation using frequency diverse array for OFDM wireless communications," IEEE Transactions on Vehicular Technology, Vol. 67, No. 10, 10886-10895, 2018.
doi:10.1109/TVT.2018.2870045

18. Huang, H. and W. Wang, "FDA-OFDM for integrated navigation, sensing, and communication systems," IEEE Aerospace and Electronic Systems Magazine, Vol. 33, No. 5-6, 34-42, 2018.
doi:10.1109/MAES.2018.170109

19. Wang, J., L. Y. Chen, X. D. Liang, C. B. Ding, and K. Li, "Implementation of the OFDM chirp waveform on MIMO SAR systems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 9, 5218-5228, 2015.
doi:10.1109/TGRS.2015.2419271

20. Liu, Y. M., H. Ruan, L. Wang, and A. Nehorai, "The random frequency diverse array: A new antenna structure for uncoupled direction-range indication in active sensing," IEEE Journal of Selected Topics in Signal Processing, Vol. 11, No. 2, 295-308, 2017.
doi:10.1109/JSTSP.2016.2627183

21. Fan, C. X. and L. N. Chao, Communication Principle, 170-320, National Defense Industry Press, Beijing, 2001.