Vol. 106
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-08-31
An Electrically Small All Metallic Probe-Fed Antenna for NavIC Applications
By
Progress In Electromagnetics Research Letters, Vol. 106, 67-74, 2022
Abstract
In this paper, a novel all-metallic probe-fed antenna is proposed for L5, L1, and S bands for Navigation with Indian Constellation (NavIC) applications, and it can be used for tracking applications. The proposed antenna dimensions are 30 mm x 80 mm x 8 mm (0.11λ x 0.31λ x 0.03λ) electrical size calculated at 1176.45 MHz (L5). The radiating plane has a comb like structure where there are 8 slots which are of identical size 24 mm x 1 mm and a short slot with 6 mm x 1 mm. The ground plane is 30 mm offset with respect to the radiating plane (top plane). Usually, a high dielectric substrate antenna can resonate at lower frequencies keeping the size of the antenna electrically small, but without substrate the proposed antenna resonates at lower frequencies keeping the antenna size electrically small. The proposed design is electrically compact and economical, and the dielectric loss in the antenna is zero as the antenna is designed with copper alone, which gives a strong impression that a substrate free antenna can resonate at lower frequencies. So, from this method it can also make the antenna light weight.
Citation
Prasanna Kushal Kumar, Gulur Sadananda Karthikeya, and Prabhakar Parimala, "An Electrically Small All Metallic Probe-Fed Antenna for NavIC Applications," Progress In Electromagnetics Research Letters, Vol. 106, 67-74, 2022.
doi:10.2528/PIERL22033103
References

1. Choudhary, S. D., A. Srivastava, and M. Kumar, "Design of single-fed dual-polarized dual-band slotted patch antenna for GPS and SDARS applications," Microwave and Optical Technology Letters, Vol. 63, No. 1, 353-360, 2021.
doi:10.1002/mop.32597

2. Floc'h, J. M., "GPS and IRIDIUM antenna for tracking," 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), 1-4, 2019.

3. Agrawal, N., A. K. Gautam, and R. Mishra, "Design of low volume circularly polarized annular ring-shaped planar antenna for GPS applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 7, e22698, 2021.
doi:10.1002/mmce.22698

4. Supriya, A. S. and R. Jolly, "A lowcost tri-band microstrip patch antenna for GPS application," 2017 Progress In Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 60-65, Singapore, November 2017.

5. Patel, H. and T. K. Upadhyaya, "Printed multiband monopole antenna for smart energy meter/WLAN/WiMAX applications," Progress In Electromagnetics Research M, Vol. 89, 43-51, 2020.
doi:10.2528/PIERM19121901

6. Mishra, S., S. Das, S. S. Pattnaik, S. Kumar, and B. K. Kanaujia, "Low-profile circularly polarized planar antenna for GPS L1, L2, and L5 bands," Microwave and Optical Technology Letters, Vol. 62, No. 2, 806-815, 2020.
doi:10.1002/mop.32077

7. Causse, A., K. Rodriguez, L. Bernard, A. Sharaiha, and S. Collardey, "Compact bandwidth enhanced cavity-backed magneto-electric dipole antenna with outer Γ-shaped probe for GNSS bands," Sensors, Vol. 21, No. 11, 3599, 2021.
doi:10.3390/s21113599

8. Paracha, K. N., et al. "A low profile, dual-band, dual polarized antenna for indoor/outdoor wearable application," IEEE Access, Vol. 7, 33277-33288, 2019.
doi:10.1109/ACCESS.2019.2894330

9. Patel, S. K., S. P. Lavadiya, J. Parmar, K. Ahmed, S. A. Taya, and S. Das, "Low-cost, multiband, high gain and reconfigurable microstrip radiating structure using PIN diode for 5G/Wi- MAX/WLAN applications," Physica B: Condensed Matter, Vol. 639, 413972, 2022.
doi:10.1016/j.physb.2022.413972

10. Nguyen, T. K., S. K. Patel, S. Lavadiya, J. Parmar, and C. D. Bui, "Design and fabrication of multiband reconfigurable copper and liquid multiple complementary split-ring resonator based patch antenna," Waves in Random and Complex Media, 1-24, 2022.
doi:10.1080/17455030.2021.2024623

11. Patel, S. K., C. D. Bui, T. K. Nguyen, J. Parmar, and Q. M. Ngo, "Numerical investigation of frequency reconfigurable antenna with liquid metamaterials for X-band," Journal of Advanced Engineering and Computation, Vol. 6, No. 1, 60-72, 2022.
doi:10.55579/jaec.202261.362

12. Kulkarni, J., R. Talware, V. Deshpande, A. Chitre, and J. Anguera, "Design and analysis of dual band tapered-fed monopole antenna for 5G and satellite applications," 2021 IEEE 18th India Council International Conference (INDICON), 1-6, IEEE, 2021.

13. Kulkarni, J., A. Poddar C.-Y.-D. Sim, U. L. Rohde, and A. G. Alharbi, "A compact circularly polarized rotated L-Shaped antenna with J-shaped defected ground strucutre for WLAN and V2X applications," Progress In Electromagnetics Research Letters, Vol. 102, 135-143, 2022.
doi:10.2528/PIERL22010305

14. Khalilabadi, J. A., "Planar multi-broadband antenna for LTE/5G/GPS/GSM/UMTS and WLAN/WiMAX wireless applications," Wireless Personal Communications, Vol. 118, No. 4, 2611-2620, 2021.
doi:10.1007/s11277-021-08145-4

15. Rao, L. and C. Tsai, "8-loop antenna array in the 5 inches size smartphone for 5G communication the 3.4 GHz{3.6 GHz band MIMO operation," 2018 Progress In Electromagnetics Research Symposium (PIERS --- Toyama), 1995-1999, 2018.
doi:10.23919/PIERS.2018.8598072

16. Ghaffar, A., X. J. Li, and T. Ahmad, "A compact frequency reconfigurable PIFA antenna for heterogeneous applications," 2020 IEEE Asia-Pacific Microwave Conference (APMC), 628-630, 2020.
doi:10.1109/APMC47863.2020.9331510

17. Tang, X., P. Chen, J.Wu, P.Wang, H.Wang, and G. Yang, "A novel tri-band GPS/WLAN antenna for tablet with full metal housing," Journal of Harbin Institute of Technology (New Series), Vol. 25, No. 2, 33-40, 2018.

18. James, J. R., Handbook of Microstrip Antennas, Vol. 1, IET, 1989.