1. Taflove, A. and S. C. Hagness, Computational Electromagnetics: Finite-Difference Time-Domain Method, 3rd Ed., Artech House, 2005.
2. Teixeira, F. L., "Time-domain nite-difference and finite-element methods for Maxwell equations in complex media," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2150-2166, 2008.
doi:10.1109/TAP.2008.926767 Google Scholar
3. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propag., Vol. 39, No. 1, 29-34, 1991.
doi:10.1109/8.64431 Google Scholar
4. Xu, L. and N. Yuan, "FDTD formulations for scattering from 3-D anisotropic magnetized plasma objects," IEEE Antennas Wireless Propag. Lett., Vol. 5, 335-338, 2006.
doi:10.1109/LAWP.2006.878901 Google Scholar
5. Zhang, J., H. Fu, and W. Scales, "FDTD analysis of propagation and absorption in nonuniform anisotropic magnetized plasma slab," IEEE Trans. Plasma Sci., Vol. 46, No. 6, 2146-2153, 2018.
doi:10.1109/TPS.2018.2830416 Google Scholar
6. Young, J. L., A. Kittichartphayak, Y. M. Kwok, and D. Sullivan, "On the dispersion errors related to (FD)2TD type schemes," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 8, 1902-1909, 1995.
doi:10.1109/22.402280 Google Scholar
7. Surkova, M., W. Tierens, I. Pavlenko, D. Van Eester, G. Van Oost, and D. De Zutter, "3-D discrete dispersion relation, numerical stability, and accuracy of the hybrid FDTD model for cold magnetized toroidal plasma," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6307-6316, 2014.
doi:10.1109/TAP.2014.2361902 Google Scholar
8. Liu, S. B., J. J. Mo, and N. C. Yuan, "An auxiliary differential equation FDTD method for anisotropic magnetized plasma," Acta Physica Sinica, Vol. 53, No. 7, 2233-2236, 2004.
doi:10.7498/aps.53.2233 Google Scholar
9. Samimi, A. and J. J. Simpson, "An efficient 3-D FDTD model of electromagnetic wave propagation in magnetized plasma," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 269-279, 2015.
doi:10.1109/TAP.2014.2366203 Google Scholar
10. Pokhrel, S., V. Shankar, and J. J. Simpson, "3-D FDTD modeling of electromagnetic wave propagation in magnetized plasma requiring singular updates to the current density equation," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4772-4781, 2018.
doi:10.1109/TAP.2018.2847601 Google Scholar
11. Yu, Y. and J. J. Simpson, "An E-J collocated 3-D FDTD model of electromagnetic wave propagation in magnetized cold plasma," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 469-478, 2010.
doi:10.1109/TAP.2009.2037770 Google Scholar
12. Smith, G. D., Numerical Solution of Partial Differential Equations, Oxford Univ. Press, 1978.
13. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS PML for arbitrary media," Microw. Opt. Tech. Lett., Vol. 50, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A Google Scholar
14. Hu, W. and S. A. Cummer, "An FDTD model for low and high altitude lightning-generated EM fields," IEEE Trans. Antennas Propag., Vol. 54, No. 5, 1513-1522, 2006.
doi:10.1109/TAP.2006.874336 Google Scholar
15. Hunsberger, F., R. Luebbers, and K. Kunz, "Finite-difference time-domain analysis of gyrotropic media. I. Magnetized plasma," IEEE Trans. Antennas Propag., Vol. 40, No. 12, 1489-1495, 1992.
doi:10.1109/8.204739 Google Scholar
16. Balanis, C., Advanced Engineering Electromagnetics, Wiley, 1989.