1. Bonato, M., et al. "Characterization of children's exposure to extremely low frequency magnetic fields by stochastic modeling," Int. J. Environ. Res. Public Health, Vol. 15, No. 9, 1963, 2018.
doi:10.3390/ijerph15091963 Google Scholar
2. Baharara, J. and Z. Zahedifar, "The effect of low-frequency electromagnetic fields on some biological activities of animals," Arak Med. Univ. J., Vol. 15, No. 7, 2012. Google Scholar
3. Florea, G. A., A. Dinca, and S. I. A. Gal, "An original approach to the biological impact of the low frequency electromagnetic fields and proofed means of mitigation," 2009 IEEE Bucharest PowerTech, 1-8, 2009. Google Scholar
4. Townsend, D. A., "Risk analysis and EMI risk abatement strategies for hospitals: Scientific and legal approaches," IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, 1304-1307, 2001. Google Scholar
5. Maisch, D., J. Podd, and B. Rapley, "Changes in health status in a group of CFS patients following removal of excessive 50 Hz magnetic field exposure," Journal of Australian College of Nutritional & Environmental Medicine, Vol. 21, No. 1, 15-19, Apr. 2002. Google Scholar
6. Dawson, T. W., K. Caputa, M. A. Stuchly, R. B. Shepard, R. Kavet, and A. Sastre, "Pacemaker interference by magnetic fields at power line frequencies," IEEE Trans. Biomed. Eng., Vol. 49, No. 3, 254-262, 2002.
doi:10.1109/10.983460 Google Scholar
7. Yerra, L. and P. C. Reddy, "Effects of electromagnetic interference on implanted cardiac devices and their management," Cardiology in Review, Vol. 15, No. 6, 304-309, 2007.
doi:10.1097/CRD.0b013e31813e0ba9 Google Scholar
8. Smith, S. and R. Aasen, "The effects of electromagnetic fields on cardiac pacemakers," IEEE Trans. Broadcast., Vol. 38, No. 2, 136-139, 1992.
doi:10.1109/11.142666 Google Scholar
9. Zhu, Y., C. Gao, L. Shi, and B. Zhou, "Analysis and test of EM shielding for low-frequency magnetic field," IEEE International Symposium on Electromagnetic Compatibility, 345-349, Qingdao, China, Oct. 23-26, 2007. Google Scholar
10. Wassef, K., V. V. Varadan, and V. K. Varadan, "Magnetic field shielding concepts for power transmission lines," IEEE Transactions on Magnetics, Vol. 34, No. 3, 649-654, 1998.
doi:10.1109/20.668061 Google Scholar
11. Canova, A. and L. Giaccone, "Magnetic field mitigation of power cable by high magnetic coupling passive loop," IET Conference Publications, No. 550, CP, 2009. Google Scholar
12. Melo, M. O. B. C., L. C. A. Fonseca, E. Fontana, and S. R. Naidu, "Electric and magnetic fields of compact transmission lines," IEEE Transactions on Power Delivery, Vol. 14, No. 1, 200-204, 1999.
doi:10.1109/61.736715 Google Scholar
13. Filippopoulos, G., D. Tsanakas, G. Kouvarakis, J. Voyatzakis, M. Amman, and K. Papailiou, "Optimum conductor arrangement of compact lines for electric and magnetic field minimization - Calculations and measurements," Med Power, Athens, Nov. 4-6, 2002. Google Scholar
14. Mimos, E. I., D. K. Tsanakas, and A. E. Tzinevrakis, "Solutions for high voltage transmission in suburban regions regarding the electric and magnetic fields," Automation Congress, 1-6, 2008. Google Scholar
15. Nunchuen, S. and V. Tarateeraseth, "Electric and magnetic field minimization using optimal phase arrangement techniques for MEA overhead power transmission lines," ECTI Trans. Electr. Eng. Electron. Commun., Vol. 19, No. 1, 51-58, 2021.
doi:10.37936/ecti-eec.2021191.217575 Google Scholar
16. Bansal, J. C., "Particle swarm optimization," Studies in Computational Intelligence, Vol. 779, 2019. Google Scholar
17. Katoch, S., S. S. Chauhan, and V. Kumar, "A review on genetic algorithm: Past, present, and future," Multimedia Tools and Applications, Vol. 80, No. 5, 8091-8126, 2021.
doi:10.1007/s11042-020-10139-6 Google Scholar
18. Kumar, M., M. Husain, N. Upreti, and D. Gupta, "Genetic algorithm: Review and application," SSRN Electronic Journal, 2020. Google Scholar
19. Al Salameh, M. S. H., I. M. Nejdawi, and O. A. Alani, "Using the nonlinear particle swarm optimization (PSO) algorithm to reduce the magnetic fields from overhead high voltage transmission lines," Int. J. Res. Rev. Appl. Sci., Vol. 4, No. 1, 18-31, 2010. Google Scholar
20. Al Salameh, M. S. H. and M. A. S. Hassouna, "Arranging overhead power transmission line conductors using swarm intelligence technique to minimize electromagnetic fields," Progress In Electromagnetics Research B, Vol. 26, 213-236, 2010.
doi:10.2528/PIERB10082104 Google Scholar
21. El Dein, A. Z., "Optimal arrangement of egyptian overhead transmission lines' conductors using genetic algorithm," Arabian Journal for Science & Engineering, Vol. 39, No. 2, 1049-1059, 2014.
doi:10.1007/s13369-013-0698-7 Google Scholar
22. Deželak, K., F. Jakl, and G. Štumberger, "Arrangements of overhead power line phase conductors obtained by differential evolution," Electr. Power Syst. Res., Vol. 81, No. 12, 2164-2170, Dec. 2011.
doi:10.1016/j.epsr.2011.07.015 Google Scholar
23. Paganotti, A. L., M. M. Afonso, M. A. de O. Schoeder, R. S. Alipio, and E. N. Gonçalves, "Arrangements of overhead power line phase conductors achieved by differential evolution method," Sociedade Brasileira de Automática, Vol. 1, No. 1, 2019. Google Scholar
24. Bravo-Rodríguez, J. C., J. C. Del-Pino-López, and P. Cruz-Romero, "A survey on optimization techniques applied to magnetic field mitigation in power systems," Energies, Vol. 12, No. 7, 1332, 2019.
doi:10.3390/en12071332 Google Scholar
25. Mirjalili, S., "The ant lion optimizer," Adv. Eng. Softw., Vol. 83, 80-98, 2015.
doi:10.1016/j.advengsoft.2015.01.010 Google Scholar
26. Bayliss, C. R. and B. J. Hardy, Transmission and Distribution: Electrical Engineering, 4th Ed., Elsevier Ltd., Feb. 2012.
27. Garrido, C., A. F. Otero, and J. Cidras, "Low-frequency magnetic fields from electrical appliances and power lines," IEEE Transactions on Power Delivery, Vol. 18, No. 4, 1310-1319, Oct. 2003.
doi:10.1109/TPWRD.2003.817744 Google Scholar
28. Saadat, H., Power System Analysis, 2nd Ed., McGraw Hill, 2002.
29. Al Hazaimeh, L. B., "Genetic algorithm optimization of the parameters of high voltage power transmission lines based on the emitted electromagnetic fields,", M.Sc Thesis, Department of Electrical Engineering, Jordan University of Science and Technology, 2021. Google Scholar
30. Trlep, M., A. Hamler, M. Jesenik, and B. Stumberger, "Electric field distribution under transmission lines dependent on ground surface," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1748-1751, 2009.
doi:10.1109/TMAG.2009.2012806 Google Scholar
31. Winterfeldt, D., "Power grid and land use policy analysis,", Final Report, California Department of Health Services, and the Public Health Institute, 2001. Google Scholar
32. Al Salameh, M. S. H., Waves and Fields of Wireless Communications and Electricity: Health-effects and Unconventional Utilizations, Lap Publishing, Printed in USA and in the UK, 2011.
33. Viscusi, W. K. and C. J. Masterman, "Income elasticities and global values of a statistical life," Journal of Benefit-Cost Analysis, Vol. 8, No. 2, 226-250, 2017.
doi:10.1017/bca.2017.12 Google Scholar
34. Robinson, L. A., J. R. Baxter, and W. Raich, "2016 Guidelines for Regulatory Impact Analysis, Appendix D: Updating value per statistical life (VSL) estimates for inflation and changes in real income,", U.S. Department of Health and Human Services, 2016. Google Scholar
35. United States General Accounting Office "Electromagnetic fields: Federal efforts to determine health effects are behind schedule,", Report to Committee on Natural Resources, House of Representatives, Washington, Jun. 1994, URL: https://www.gao.gov/assets/rced-94-115.pdf. Google Scholar
36. Website, World Bank data "Inflation, consumer prices (annual %) - Jordan,", https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG?end=2020&locations=JO&start=1970&view=chart. Google Scholar