1. Zhang, J., X. Yu, and K. B. Letaief, "Hybrid beam forming for 5G and beyond millimeter-wave systems: A holistic view," IEEE Open Journal of the Communications Society, Vol. 1, 77-91, 2019.
doi:10.1109/OJCOMS.2019.2959595 Google Scholar
2. Przesmycki, R., M. Bugaj, and L. Nowosielski, "Broadband microstrip antenna for 5G wireless systems operating at 28 GHz," Electronics, Vol. 10, 1, 2021.
doi:10.3390/electronics10010001 Google Scholar
3. Kim, G. and S. Kim, "Design and analysis of dual polarized broadband microstrip patch antenna for 5G mmwave antenna module on FR4 substrate," IEEE Access, Vol. 9, 64306-64316, 2021.
doi:10.1109/ACCESS.2021.3075495 Google Scholar
4. Almashhdany, M. B., A. A. Oras, M. S. Ahmed, A. Mohamed, H. Naba, and A. Fatima, "Design of multi-band slotted mmwave antenna for 5G mobile applications," Proceedings of the IOP Conference Series: Materials Science and Engineering, Vol. 881, No. 1, 012150, April 2020.
doi:10.1088/1757-899X/881/1/012150 Google Scholar
5. Haroon, M. S., F. Muhammad, G. Abbas, Z. H. Abbas, A. Kamal, M. Waqas, and S. Kim, "Interference management in ultra-dense 5G networks with excessive drone usage," IEEE Access, 1-10, 2020. Google Scholar
6. Khan, J., D. A. Sehrai, and U. Ali, "Design of dual band 5G antenna array with SAR analysis for future mobile handsets," J. Electr. Eng. Technol., Vol. 14, 809-816, 2019.
doi:10.1007/s42835-018-00059-9 Google Scholar
7. Pervez, M. M., Z. H. Abbas, F. Muhammad, and L. Jiao, "Location-based coverage and capacity analysis of a two tier HetNet," IET Commun., Vol. 11, 1067-1073, 2017.
doi:10.1049/iet-com.2016.1244 Google Scholar
8. Sun, L., Y. Li, Z. Zhang, and Z. Feng, "Wideband 5G MIMO antenna with integrated orthogonal- mode dual-antenna pairs for metal-rimmed smartphones," IEEE Trans. Antennas Propag., Vol. 68, 2494-2503, 2020.
doi:10.1109/TAP.2019.2948707 Google Scholar
9. Abdullah, M., S. H. Kiani, and A. Iqbal, "Eight element multiple-input multiple-output (MIMO) antenna for 5G mobile applications," IEEE Access, Vol. 7, 134488-134495, 2019.
doi:10.1109/ACCESS.2019.2941908 Google Scholar
10. Yuan, X., W. He, K. Hong, C. Han, Z. Chen, and T. Yuan, "Ultra-wideband MIMO antenna system with high element-isolation for 5G smartphone application," IEEE Access, Vol. 8, 56281-56289, 2020.
doi:10.1109/ACCESS.2020.2982036 Google Scholar
11. Altaf, A., M. A. Alsunaidi, and E. Arvas, "A novel EBG structure to improve isolation in MIMO antenna," Proceedings of the IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 105-106, San Diego, CA, USA, July 9-14, 2017. Google Scholar
12. Wang, F., Z. Duan, X. Wang, Q. Zhou, and Y. Gong, "High isolation millimeter-wave wideband MIMO antenna for 5G communication," Int. J. Antennas Propag., 4283010, 2019. Google Scholar
13. Abdullah, M., S. H. Kiani, L. F. Abdulrazak, A. Iqbal, M. A. Bashir, S. Khan, and S. Kim, "High-performance multiple-input multiple-output antenna system for 5G mobile terminals," Electronics, Vol. 8, 1090, 2019.
doi:10.3390/electronics8101090 Google Scholar
14. Haroon, M. S., Z. H Abbas, G. Abbas, and F. Muhammad, "SIR analysis for non-uniform HetNets with Joint decoupled association and interference management," Comput. Commun., Vol. 155, 48-57, 2020. Google Scholar
15. Haroon, M. S., Z. H. Abbas, F. Muhammad, and G. Abbas, "Coverage analysis of cell edge users in heterogeneous wireless networks using Stienen's model and RFA scheme," Int. J. Commun. Syst., Vol. 33, e4147, 2019. Google Scholar
16. Khan, J., D. A. Sehrai, M. A. Khan, H. A. Khan, S. Ahmad, A. Ali, A. Arif, A. A. Memon, and S. Khan, "Design and performance comparison of rotated Y-shaped antenna using different metamaterial surfaces for 5G mobile devices," Comput. Mater. Contin., Vol. 60, 409-420, 2019. Google Scholar
17. Wang, P., Y. Li, L. Song, and B. Vucetic, "Multi-gigabit millimeter waves wireless communications for 5G: From fixed access to cellular networks," IEEE Commun. Mag., Vol. 53, 168-178, 2015.
doi:10.1109/MCOM.2015.7010531 Google Scholar
18. Sulyman, A. I., A. Alwarafy, G. R. MacCartney, T. S. Rappaport, and A. Alsanie, "Directional radio propagation path loss models for millimeter-wave wireless networks in the 28-, 60-, and 73-GHz bands," IEEE Trans. Wirel. Commun., Vol. 15, 6939-6947, 2016.
doi:10.1109/TWC.2016.2594067 Google Scholar
19. Shayea, I., T. A. Rahman, M. H. Azmi, and M. R. Islam, "Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia," IEEE Access, Vol. 6, 19044-19064, 2018.
doi:10.1109/ACCESS.2018.2810855 Google Scholar
20. Zhang, J., X. Ge, Q. Li, M. Guizani, and Y. Zhang, "5G millimeter-wave antenna array: Design and challenges," IEEE Wirel. Commun., Vol. 24, 106-112, 2017.
doi:10.1109/MWC.2016.1400374RP Google Scholar
21. Roh, W., J. Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750 Google Scholar
22. Khalily, M., R. Tafazolli, P. Xiao, and A. A. Kishk, "Broadband mm-wave microstrip array antenna with improved radiation characteristics for different 5G applications," IEEE Trans. Antennas Propag., Vol. 66, 4641-4647, 2018.
doi:10.1109/TAP.2018.2845451 Google Scholar
23. Khalid, M., S. Iffat Naqvi, N. Hussain, M. Rahman, S. S. Mirjavadi, M. J. Khan, and Y. Amin, "4 port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, 71, 2020.
doi:10.3390/electronics9010071 Google Scholar
24. Liu, Y., A. Ren, H. Liu, H. Wang, and C. Sim, "Eight-port MIMO array using characteristic mode theory for 5G smartphone applications," IEEE Access, Vol. 7, 45679-45692, 2019.
doi:10.1109/ACCESS.2019.2909070 Google Scholar
25. Haq, M. A. U., M. A. Khan, and M. R. Islam, "MIMO antenna design for future 5G wireless communication systems," Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 653, Springer, Cham, Switzerland, 2016. Google Scholar
26. Guo, J., L. Cui, C. Li, and B. Sun, "Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 66, 7412-7417, 2018.
doi:10.1109/TAP.2018.2872130 Google Scholar
27. Yang, B., Z. Yu, Y. Dong, J. Zhou, and W. Hong, "Compact tapered slot antenna array for 5G millimeter-wave massive MIMO systems," IEEE Trans. Antennas Propag., Vol. 65, 6721-6727, 2017.
doi:10.1109/TAP.2017.2700891 Google Scholar
28. Hussain, N., M. Jeong, J. Park, and N. Kim, "A broadband circularly polarized fabry-perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019.
doi:10.1109/ACCESS.2019.2908441 Google Scholar
29. Jiang, H., L. Si, W. Hu, and X. Lv, "A symmetrical dual-beam bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications," IEEE Photonics J., Vol. 11, 1-9, 2019. Google Scholar
30. Patre, S. R. and S. P. Singh, "Broadband multiple-input{multiple-output antenna using castor leaf- shaped quasi-self-complementary elements," IET Microwaves, Antennas & Propagation, Vol. 10, 1673-1681, IET, Hertford, UK, 2016. Google Scholar
31. Abbas, E. A., M. Ikram, A. T. Mobashsher, and A. Abbosh, "MIMO antenna system for multi- band millimeter-wave 5G and wideband 4G mobile communications," IEEE Access, Vol. 7, 181916-181923, 2019.
doi:10.1109/ACCESS.2019.2958897 Google Scholar
32. Sehrai, D. A., M. Abdullah, A. Altaf, S. H. Kiani, F. Muhammad, M. Tufail, M. Irfan, A. Glowacz, and S. Rahman, "A novel high gain wideband MIMO antenna for 5G millimeter wave applications," Electronics, Vol. 9, 1031, 2020.
doi:10.3390/electronics9061031 Google Scholar
33. Morabito, A. F., A. R. Laganà, and T. Isernia, "Optimizing power transmission in given target areas in the presence of protection requirements," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 44-47, 2015.
doi:10.1109/LAWP.2014.2354514 Google Scholar