Vol. 110
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-06-10
A Millimeter Wave Elliptical Slot Circular Patch MIMO Antenna for Future 5G Mobile Communication Networks
By
Progress In Electromagnetics Research M, Vol. 110, 235-247, 2022
Abstract
This paper proposes a 4-port MIMO (Multiple-Input Multiple-Output) antenna operating at 28 GHz in the millimeter wave band for future 5G communications. The first design in this work is a single-element circular shaped microstrip patch antenna with an elliptical slot and a defected ground structure which is intended for 28 GHz band. This antenna is compact with a size of 6 mm × 7 mm. A complete analysis of single patch element antenna is presented with effect of slot and defected ground structure in Section 2. In Section 3, the second design, which is symmetric two-element MIMO slotted circular patch antennas, is analyzed with the dimension L x W as 7 mm x 6 mm. In Section 4, the final fabricated design is presented, which is a 4-port MIMO antenna operating at resonance frequency of 28 GHz along with the improved isolation between the elements due to appropriate spacing. The proposed 4 port MIMO antenna is designed on a Rogers Duroid 5880 substrate having a relative dielectric permittivity of 2.2 and thickness of 0.8 mm. The overall dimension of this designed MIMO antenna is 20×20×0.8 mm3. Simulated results for the S-parameters and radiation pattern are presented for all purposed designs using CST software. Measured results are also presented for the return loss using Rhode & Schwarz ZVA 40 vector network analyzer. Simulated and measured results show a good agreement. The simulation results demonstrate that the return loss at individual port is less than -10 dB in the frequency range of 26.867–28.975 GHz, and it provide a bandwidth of 2.1 GHz. The antenna has a high gain of 9.24 dB with unidirectional radiation pattern, and each element has a mutual coupling less than -20 dB.
Citation
Suman Sharma, and Mukesh Kumar, "A Millimeter Wave Elliptical Slot Circular Patch MIMO Antenna for Future 5G Mobile Communication Networks," Progress In Electromagnetics Research M, Vol. 110, 235-247, 2022.
doi:10.2528/PIERM22041101
References

1. Zhang, J., X. Yu, and K. B. Letaief, "Hybrid beam forming for 5G and beyond millimeter-wave systems: A holistic view," IEEE Open Journal of the Communications Society, Vol. 1, 77-91, 2019.
doi:10.1109/OJCOMS.2019.2959595

2. Przesmycki, R., M. Bugaj, and L. Nowosielski, "Broadband microstrip antenna for 5G wireless systems operating at 28 GHz," Electronics, Vol. 10, 1, 2021.
doi:10.3390/electronics10010001

3. Kim, G. and S. Kim, "Design and analysis of dual polarized broadband microstrip patch antenna for 5G mmwave antenna module on FR4 substrate," IEEE Access, Vol. 9, 64306-64316, 2021.
doi:10.1109/ACCESS.2021.3075495

4. Almashhdany, M. B., A. A. Oras, M. S. Ahmed, A. Mohamed, H. Naba, and A. Fatima, "Design of multi-band slotted mmwave antenna for 5G mobile applications," Proceedings of the IOP Conference Series: Materials Science and Engineering, Vol. 881, No. 1, 012150, April 2020.
doi:10.1088/1757-899X/881/1/012150

5. Haroon, M. S., F. Muhammad, G. Abbas, Z. H. Abbas, A. Kamal, M. Waqas, and S. Kim, "Interference management in ultra-dense 5G networks with excessive drone usage," IEEE Access, 1-10, 2020.

6. Khan, J., D. A. Sehrai, and U. Ali, "Design of dual band 5G antenna array with SAR analysis for future mobile handsets," J. Electr. Eng. Technol., Vol. 14, 809-816, 2019.
doi:10.1007/s42835-018-00059-9

7. Pervez, M. M., Z. H. Abbas, F. Muhammad, and L. Jiao, "Location-based coverage and capacity analysis of a two tier HetNet," IET Commun., Vol. 11, 1067-1073, 2017.
doi:10.1049/iet-com.2016.1244

8. Sun, L., Y. Li, Z. Zhang, and Z. Feng, "Wideband 5G MIMO antenna with integrated orthogonal- mode dual-antenna pairs for metal-rimmed smartphones," IEEE Trans. Antennas Propag., Vol. 68, 2494-2503, 2020.
doi:10.1109/TAP.2019.2948707

9. Abdullah, M., S. H. Kiani, and A. Iqbal, "Eight element multiple-input multiple-output (MIMO) antenna for 5G mobile applications," IEEE Access, Vol. 7, 134488-134495, 2019.
doi:10.1109/ACCESS.2019.2941908

10. Yuan, X., W. He, K. Hong, C. Han, Z. Chen, and T. Yuan, "Ultra-wideband MIMO antenna system with high element-isolation for 5G smartphone application," IEEE Access, Vol. 8, 56281-56289, 2020.
doi:10.1109/ACCESS.2020.2982036

11. Altaf, A., M. A. Alsunaidi, and E. Arvas, "A novel EBG structure to improve isolation in MIMO antenna," Proceedings of the IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 105-106, San Diego, CA, USA, July 9-14, 2017.

12. Wang, F., Z. Duan, X. Wang, Q. Zhou, and Y. Gong, "High isolation millimeter-wave wideband MIMO antenna for 5G communication," Int. J. Antennas Propag., 4283010, 2019.

13. Abdullah, M., S. H. Kiani, L. F. Abdulrazak, A. Iqbal, M. A. Bashir, S. Khan, and S. Kim, "High-performance multiple-input multiple-output antenna system for 5G mobile terminals," Electronics, Vol. 8, 1090, 2019.
doi:10.3390/electronics8101090

14. Haroon, M. S., Z. H Abbas, G. Abbas, and F. Muhammad, "SIR analysis for non-uniform HetNets with Joint decoupled association and interference management," Comput. Commun., Vol. 155, 48-57, 2020.

15. Haroon, M. S., Z. H. Abbas, F. Muhammad, and G. Abbas, "Coverage analysis of cell edge users in heterogeneous wireless networks using Stienen's model and RFA scheme," Int. J. Commun. Syst., Vol. 33, e4147, 2019.

16. Khan, J., D. A. Sehrai, M. A. Khan, H. A. Khan, S. Ahmad, A. Ali, A. Arif, A. A. Memon, and S. Khan, "Design and performance comparison of rotated Y-shaped antenna using different metamaterial surfaces for 5G mobile devices," Comput. Mater. Contin., Vol. 60, 409-420, 2019.

17. Wang, P., Y. Li, L. Song, and B. Vucetic, "Multi-gigabit millimeter waves wireless communications for 5G: From fixed access to cellular networks," IEEE Commun. Mag., Vol. 53, 168-178, 2015.
doi:10.1109/MCOM.2015.7010531

18. Sulyman, A. I., A. Alwarafy, G. R. MacCartney, T. S. Rappaport, and A. Alsanie, "Directional radio propagation path loss models for millimeter-wave wireless networks in the 28-, 60-, and 73-GHz bands," IEEE Trans. Wirel. Commun., Vol. 15, 6939-6947, 2016.
doi:10.1109/TWC.2016.2594067

19. Shayea, I., T. A. Rahman, M. H. Azmi, and M. R. Islam, "Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia," IEEE Access, Vol. 6, 19044-19064, 2018.
doi:10.1109/ACCESS.2018.2810855

20. Zhang, J., X. Ge, Q. Li, M. Guizani, and Y. Zhang, "5G millimeter-wave antenna array: Design and challenges," IEEE Wirel. Commun., Vol. 24, 106-112, 2017.
doi:10.1109/MWC.2016.1400374RP

21. Roh, W., J. Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750

22. Khalily, M., R. Tafazolli, P. Xiao, and A. A. Kishk, "Broadband mm-wave microstrip array antenna with improved radiation characteristics for different 5G applications," IEEE Trans. Antennas Propag., Vol. 66, 4641-4647, 2018.
doi:10.1109/TAP.2018.2845451

23. Khalid, M., S. Iffat Naqvi, N. Hussain, M. Rahman, S. S. Mirjavadi, M. J. Khan, and Y. Amin, "4 port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, 71, 2020.
doi:10.3390/electronics9010071

24. Liu, Y., A. Ren, H. Liu, H. Wang, and C. Sim, "Eight-port MIMO array using characteristic mode theory for 5G smartphone applications," IEEE Access, Vol. 7, 45679-45692, 2019.
doi:10.1109/ACCESS.2019.2909070

25. Haq, M. A. U., M. A. Khan, and M. R. Islam, "MIMO antenna design for future 5G wireless communication systems," Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 653, Springer, Cham, Switzerland, 2016.

26. Guo, J., L. Cui, C. Li, and B. Sun, "Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 66, 7412-7417, 2018.
doi:10.1109/TAP.2018.2872130

27. Yang, B., Z. Yu, Y. Dong, J. Zhou, and W. Hong, "Compact tapered slot antenna array for 5G millimeter-wave massive MIMO systems," IEEE Trans. Antennas Propag., Vol. 65, 6721-6727, 2017.
doi:10.1109/TAP.2017.2700891

28. Hussain, N., M. Jeong, J. Park, and N. Kim, "A broadband circularly polarized fabry-perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019.
doi:10.1109/ACCESS.2019.2908441

29. Jiang, H., L. Si, W. Hu, and X. Lv, "A symmetrical dual-beam bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications," IEEE Photonics J., Vol. 11, 1-9, 2019.

30. Patre, S. R. and S. P. Singh, "Broadband multiple-input{multiple-output antenna using castor leaf- shaped quasi-self-complementary elements," IET Microwaves, Antennas & Propagation, Vol. 10, 1673-1681, IET, Hertford, UK, 2016.

31. Abbas, E. A., M. Ikram, A. T. Mobashsher, and A. Abbosh, "MIMO antenna system for multi- band millimeter-wave 5G and wideband 4G mobile communications," IEEE Access, Vol. 7, 181916-181923, 2019.
doi:10.1109/ACCESS.2019.2958897

32. Sehrai, D. A., M. Abdullah, A. Altaf, S. H. Kiani, F. Muhammad, M. Tufail, M. Irfan, A. Glowacz, and S. Rahman, "A novel high gain wideband MIMO antenna for 5G millimeter wave applications," Electronics, Vol. 9, 1031, 2020.
doi:10.3390/electronics9061031

33. Morabito, A. F., A. R. Laganà, and T. Isernia, "Optimizing power transmission in given target areas in the presence of protection requirements," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 44-47, 2015.
doi:10.1109/LAWP.2014.2354514