Vol. 105
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-08-01
Design of Frequency Multiplexed Coding Metasurface for Dual-Functional Beam Control
By
Progress In Electromagnetics Research Letters, Vol. 105, 111-120, 2022
Abstract
A frequency multiplexed coding metasurface controlling beam is proposed to enrich the functions of a single metasurface. A square F4B dielectric substrate with a copper-clad bottom surface and a V-shaped and quadrangular cross-shaped metal structure is used as the unit. Applying the different responses of x and y polarized waves and optimization of structural parameters, we can obtain 1-bit coding units for the two frequency bands. The reflection phase can be modulated independently of each other. The design of a dual-band metasurface with different beam splitting effects was realized, achieving the goal of different frequency multiplexing functions on a single metasurface. An RCS reduction of 11 dB at 12 GHz and a double beam splitting at 20 GHz with a pitch angle of ±47.6° are achieved by metasurface. The test results agree well with the simulation results. The proposed metasurfaces offer a simple structure, low cost, good performance, and promising great applications in areas such as frequency multiplexed communications.
Citation
Honggang Hao, Qinxuan Ling, Wei Ruan, and Hanhai Xiao, "Design of Frequency Multiplexed Coding Metasurface for Dual-Functional Beam Control," Progress In Electromagnetics Research Letters, Vol. 105, 111-120, 2022.
doi:10.2528/PIERL22042401
References

1. Saifullah, Y., et al. "Multi-bit dielectric coding metasurface for EM wave manipulation and anomalous reflection," Optics Express, Vol. 28, 1139-1149, 2019.
doi:10.1364/OE.383214

2. Wu, R. Y., L. Bao, and L. W. Wu, "Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning," Mechanics and Astronomy, Vol. 63, 284211, 2021.
doi:10.1007/s11433-019-1479-3

3. Arbabi, E., A. Arbabi, and S. M. Kamali, "Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules," Optica, Vol. 3, 628-633, 2016.
doi:10.1364/OPTICA.3.000628

4. Shen, Z., B. Jin, and J. Zhao, "Design of transmission-type coding metasurface and its application of beam forming," Applied Physics Letters, Vol. 109, 1119-1121, 2016.

5. Shang, G. Y. and H. Y. Li, "Coding metasurface holography with polarization-multiplexed functionality," Journal of Applied Physics, Vol. 129, 34-35, 2021.
doi:10.1063/5.0036027

6. Zhang, L. and X. Wan, "Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface," IEEE Transactions on Antennas and Propagation, Vol. 65, 3374-3383, 2017.
doi:10.1109/TAP.2017.2700874

7. Bai, G. D., Q. Ma, and I. Shahid, "Multitasking shared aperture enabled with multiband digital coding metasurface," Advanced Optical Materials, Vol. 6, 1-10, 2018.
doi:10.1002/adom.201800657

8. Cui, T. J., M. Qi, and X. Wan, "Coding metamaterials, digital metamaterials and programming metamaterials," Light: Science & Applications, Vol. 3, 218, 2014.
doi:10.1038/lsa.2014.99

9. Liu, S., T. J. Cui, and L. Zhang, "Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams," Advanced Science, Vol. 3, 1600156, 2016.
doi:10.1002/advs.201600156

10. Iqbal, S., H. Rajabalipanah, and L. Zhang, "Frequency-multiplexed pure-phase microwave meta-holograms using bi-spectral 2-bit coding metasurfaces," Nanophotonics, Vol. 9, 703-714, 2020.
doi:10.1515/nanoph-2019-0461

11. Fu, C. and C. Liu, "Reflection-type 1-bit coding metasurface for RCS reduction combined diffusion and reflection," Journal of Physics D Applied Physics, Vol. 53, 5107, 2020.

12. Li, J., J. Feng, and B. Li, "Dual-band transmissive cross-polarization converter with extremely high polarization conversion ratio using transmitarray," Materials, Vol. 12, 1827, 2019.
doi:10.3390/ma12111827

13. Zhu, L., T. C. Li, and J. H. Huang, "Frequency coding all-dielectric metasurface for flexible control of electromagnetic radiation," Applied Physics A, Vol. 127, 131, 2021.
doi:10.1007/s00339-020-04220-y

14. Xie, R., G. Zhai, and J. Gao, "Multifunctional geometric metasurfaces based on tri-spectral meta-atoms with completely independent phase modulations at three wavelengths," Advanced Theory and Simulations, Vol. 3, 2000090, 2020.
doi:10.1002/adts.202000099

15. Lin, J., C. Chen, and J. Ding, "Dual-frequency multiple compact vortex beams generation based on single-layer Bi-spectral metasurface," Applied Physics Letters, Vol. 119, 081905, 2021.
doi:10.1063/5.0058669