Vol. 105
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-08-06
Partially Excited Antenna Array for Near-Field Patterned Focusing
By
Progress In Electromagnetics Research Letters, Vol. 105, 149-154, 2022
Abstract
In this letter, a near-field focusing method for generating patterned focusing is studied. A partially excited planar array antenna is proposed for patterned focusing, which effectively suppresses the side lobes of the focusing pattern. The phase of the array antenna is adjusted by a digital phase shifter. A prototype was made and tested to verify the effectiveness of the method. Both the full planar array and the partially excited array realize the ``.'' pattern, and the partially excited array effectively reduces the side lobes. The experimental results show that the method can achieve focusing in any area. This study can provide a reference for wireless energy transfer and microwave hyperthermia.
Citation
Yingjun Li, Na Kou, and Shixing Yu, "Partially Excited Antenna Array for Near-Field Patterned Focusing," Progress In Electromagnetics Research Letters, Vol. 105, 149-154, 2022.
doi:10.2528/PIERL22051901
References

1. Jouade, A., L. Ferro-Famil, S. Meric, O. Lafond, and L. Le Coq, "High resolution radar focusing using spectral estimation methods in wide-band and near-field configurations: Application to millimeter-wave near-range imaging," Progress In Electromagnetics Research B, Vol. 79, 45-64, 2017.
doi:10.2528/PIERB17082402

2. Li, P., S. Qu, and S. Yang, "Two-dimensional imaging based on near-field focused array antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 2, 274-278, Feb. 2019.
doi:10.1109/LAWP.2018.2888853

3. Ayestarán, R., G. León, R. Pino, and P. Nepa, "Wireless power transfer through simultaneous near-field focusing and far-field synthesis," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5623-5633, Aug. 2019.
doi:10.1109/TAP.2019.2916677

4. Mavaddat, A., S. Armaki, and A. Erfanian, "Millimeter-wave energy harvesting using 4 × 4 microstrip patch antenna array," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 515-518, 2015.
doi:10.1109/LAWP.2014.2370103

5. He, X., G. Wan, and S. Wang, "A hexagonal focused array for microwave hyperthermia: Optimal design and experiment," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 56-59, 2016.
doi:10.1109/LAWP.2015.2429596

6. Chou, H., T. Hung, N. Wang, H. Chou, C. Tung, and P. Nepa, "Design of a near-field focused reflectarray antenna for 2.4 GHz RFID reader applications," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 1013-1018, Mar. 2011.
doi:10.1109/TAP.2010.2103030

7. Chou, H., M. Lee, and C. Yu, "Subsystem of phased array antennas with adaptive beam steering in the near-field RFID applications," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1746-1749, 2015.
doi:10.1109/LAWP.2015.2422212

8. Shavit, R., T. Wells, and A. Cohen, "Forward-scattering analysis in a focused-beam system," IEEE Trans. Antennas Propag., Vol. 46, No. 4, 563-569, Apr. 1998.
doi:10.1109/8.664122

9. Karimkashi, S. and A. Kishk, "Focusing properties of Fresnel zone plate lens antennas in the near-field region," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1481-1487, May 2011.
doi:10.1109/TAP.2011.2123069

10. Elshennawy, W., "Near-field focused reflectarray antenna and reconfigurable intelligent surfaces: The potential of wave propagation control for smart radio environment," Progress In Electromagnetics Research C, Vol. 108, 211-225, 2021.
doi:10.2528/PIERC20120303

11. Plaza, E., G. León, S. Loredo, A. Arboleya, F. Las-Heras, C. Álvarez, and M. Rodriguez-Pino, "An ultrathin 2-bit near-field transmitarray lens," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1784-1787, 2017.

12. Tofigh, F., J. Nourinia, M. Azarmanesh, and K. Khazaei, "Near-field focused array microstrip planar antenna for medical applications," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 951-954, 2014.
doi:10.1109/LAWP.2014.2322111

13. Li, P., S. Qu, S. Yang, and Z. Nie, "Microstrip array antenna with 2-D steerable focus in near-field region," IEEE Trans. Antennas Propag., Vol. 65, No. 9, 4607-4617, Sept. 2017.
doi:10.1109/TAP.2017.2726579

14. Li, P., S. Qu, S. Yang, Y. Liu, and Q. Xue, "Microstrip array antenna with 2-D steerable focus in near-field region," IEEE Trans. Antennas Propag., Vol. 65, No. 9, 4607-4617, Sept. 2017.
doi:10.1109/TAP.2017.2726579

15. Yu, S., H. Liu, and L. Li, "Design of near-field focused metasurface for high-efficient wireless power transfer with multifocus characteristics," IEEE Transactions on Industrial Electronics, Vol. 66, No. 5, 3993-4002, May 2019.
doi:10.1109/TIE.2018.2815991

16. Hao, H., S. Zheng, Y. Tang, and X. Ran, "Design of electromagnetic wave multi-type focusing based on 1-Bit metasurface," Progress In Electromagnetics Research M, Vol. 105, 79-88, 2021.
doi:10.2528/PIERM21080505

17. Yu, S., N. Kou, Z. Ding, and Z. Zhang, "Design of dual-polarized reflectarray for near-field shaped focusing," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 5, 803-807, May 2021.
doi:10.1109/LAWP.2021.3063848

18. Li, Y., S. Yu, N. Kou, Z. Ding, and Z. Zhang, "Cylindrical conformal array antenna for near field focusing," Int. J. RF Microw Comput-Aided Eng., Vol. 32, No. 6, e23135, 2022.
doi:10.1002/mmce.23135

19. Palmeri, R., M. Bevacqua, A. Morabito, and T. Isernia, "Design of artificial-material-based antennas using inverse scattering techniques," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7076-7090, Dec. 2018.
doi:10.1109/TAP.2018.2871707