School of Electronics Engineering
Kalinga Institute of Industrial Technology
India
HomepageDepartment of Electronics Engineering
Kalinga Institute of Industrial Technology
India
HomepageSchool of Electronics Engineering
Kalinga Institute of Industrial Technology
India
HomepageDepartment of Electronics & Communication Engineering
Jaypee Institute of Information Technology
India
Homepage1. Jung, J., W. Choi, and J. Choi, "A small wideband microstrip-fed monopole antenna," IEEE Microwave and Wireless Component Letters, Vol. 15, 703-705, 2005.
doi:10.1109/LMWC.2005.856834 Google Scholar
2. Tseng, C.-F., C.-L. Huang, and C.-H. Hsu, "Microstrip fed monopole antenna with a shorted parasitic element for wideband application," Progress In Electromagnetics Research Letters, Vol. 7, 115-125, 2009.
doi:10.2528/PIERL09021206 Google Scholar
3. Luk, K. M. and S. H. Wong, "A printed high-gain monopole antenna for indoor wireless LANs," Microwave and Optical Technology Letters, Vol. 41, 177-180, 2004.
doi:10.1002/mop.20085 Google Scholar
4. Sihvola, A., "Metamaterials in electromagnetics," Metamaterials, Vol. 2, 2-11, 2007.
doi:10.1016/j.metmat.2007.02.003 Google Scholar
5. Cui, T. J., D. R. Smith, and R. Liu, Metamaterials: Theory, Design and Applications, Springer, 2009.
6. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, 2113-2130, 2006.
doi:10.1109/TAP.2006.877179 Google Scholar
7. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 55, 13-25, 2007.
doi:10.1109/TAP.2006.888401 Google Scholar
8. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Transactions on Antennas and Propagation, Vol. 60, 2175-2182, 2012.
doi:10.1109/TAP.2012.2189699 Google Scholar
9. Panda, P. K. and D. Ghosh, "Isolation and gain enhancement of patch antennas using EMNZ superstrate," International Journal of Electronics and Communication (AEU), Vol. 86, 164-170, 2018.
doi:10.1016/j.aeue.2018.01.037 Google Scholar
10. Li, D., Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, 6018-6023, 2012.
doi:10.1109/TAP.2012.2213231 Google Scholar
11. Guo, Y., G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou, "Efficient modeling of novel uniplanar left-handed metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1462-1468, 2005.
doi:10.1109/TMTT.2005.845204 Google Scholar
12. Alsath, M. G. N., M. Kanagasabai, and B. Balasubramanian, "Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 15-18, 2013.
doi:10.1109/LAWP.2012.2237156 Google Scholar
13. Thummaluru, S. R. and R. K. Chaudhary, "Mu-negative metamaterial filter-based isolation technique for MIMO antennas," Electronics Letters, Vol. 53, 644-646, 2017.
doi:10.1049/el.2017.0809 Google Scholar
14. Pozar, D. M., Microwave Engineering, John Willey & Sons, 2011.
15. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 66-73, 2005.
doi:10.1109/TMTT.2004.839303 Google Scholar
16. Kordiboroujeni, Z. and J. Bornemann, "Designing the width of substrate integrated waveguide structures," IEEE Microwave and Wireless Components Letters, Vol. 23, 518-520, 2013.
doi:10.1109/LMWC.2013.2279098 Google Scholar
17. Alu, A., N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas and Propagation Magazine, Vol. 49, 23-36, 2007.
doi:10.1109/MAP.2007.370979 Google Scholar
18. Milias, C., R. B. Andersen, P. I. Lazaridis, Z. D. Zaharis, B. Muhammad, J. T. B. Kristensen, A. Mihovska, and D. D. S. Hermanse, "Metamaterial-inspired antennas: A review of the state of the art and future design challenges," IEEE Access, Vol. 09, 89846-89865, 2021.
doi:10.1109/ACCESS.2021.3091479 Google Scholar
19. Jokanovic, B., R. H. Geschke, T. S. Beukman, and V. Milosevic, "Metamaterials: Characteristics, design and microwave applications," SAIEE African Research Journal, Vol. 101, 82-92, 2010.
doi:10.23919/SAIEE.2010.8531553 Google Scholar
20. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
21. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
22. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2081, 1999.
doi:10.1109/22.798002 Google Scholar
23. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 60, 772-785, 2012.
doi:10.1109/TAP.2011.2173120 Google Scholar
24. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Physical Review Letters, Vol. 93, 197401-1-4, 2004.
doi:10.1103/PhysRevLett.93.197401 Google Scholar
25. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
26. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 05, 34-50, 2004.
doi:10.1109/MMW.2004.1337766 Google Scholar
27. Alibakhshikenari, M., B. S. Virdee, L. Azpilicueta, M. Naser-Moghadasi, M. O. Akinsolu, C. H. See, B. Liu, R. A. ABD-Alhameed, F. Falcone, I. Huynen, T. A. Denidni, and E. Limiti, "A comprehensive survey of metamaterial transmission-line based antennas: Design, challenges, and applications," IEEE Access, Vol. 08, 144778-144808, 2020.
doi:10.1109/ACCESS.2020.3013698 Google Scholar
28. Alibakhshikenari, M., "Printed planar patch antennas based on metamaterial," International Journal of Electronics Letters, Vol. 02, 37-42, 2014.
doi:10.1080/21681724.2013.874042 Google Scholar
29. Sadeghzadeh, R. A., M. Alibakhshikenari, and M. Naser-Moghadasi, "UWB antenna based on SCRLH-TLs for portable wireless devices," Microwave and Optical Technology Letters, Vol. 58, 69-71, 2016.
doi:10.1002/mop.29491 Google Scholar
30. Alibakhshikenari, M., A. Andujar, and J. Anguera, "New compact printed leaky-wave antenna with beam steering," Microwave and Optical Technology Letters, Vol. 58, 215-217, 2016.
doi:10.1002/mop.29538 Google Scholar
31. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, and B. S. Virdee, "Metamaterial-based antennas for integration in UWB transceivers and portable microwave handsets," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, 88-96, 2016.
doi:10.1002/mmce.20942 Google Scholar
32. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "New compact antenna based on simplified CRLH-TL for UWB wireless communication systems," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, 217-225, 2016.
doi:10.1002/mmce.20956 Google Scholar
33. Alibakhshikenari, M., M. Naser-Moghadasi, B. S. Virdee, A. Andujar, and J. Anguera, "Compact antenna based on a composite right/left-handed transmission line," Microwave and Optical Technology Letters, Vol. 57, 1785-1788, 2015.
doi:10.1002/mop.29191 Google Scholar
34. Alibakhshikenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "The resonating MTM-based miniaturized antennas for wide-band RF-microwave systems," Microwave and Optical Technology Letters, Vol. 57, 2339-2344, 2015.
doi:10.1002/mop.29328 Google Scholar
35. Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti, "A novel monofilar-archimedean metamaterial inspired leaky-wave antenna for scanning application for passive radar system," Microwave and Optical Technology Letters, Vol. 60, 2055-2060, 2018.
doi:10.1002/mop.31300 Google Scholar
36. Alibakhshikenari, M. and M. Naser-Moghadasi, "Novel UWB miniaturized integrated antenna based on CRLH metamaterial transmission lines," International Journal of Electronics and Communication (AEU), Vol. 69, 1143-1149, 2015.
doi:10.1016/j.aeue.2015.04.017 Google Scholar
37. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Bandwidth extension of planar antennas using embedded slits for reliable multiband RF communications," International Journal of Electronics and Communication (AEU), Vol. 70, 910-919, 2016.
doi:10.1016/j.aeue.2016.04.003 Google Scholar
38. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Travelling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications," International Journal of Electronics and Communication (AEU), Vol. 70, 1645-1650, 2016.
doi:10.1016/j.aeue.2016.10.003 Google Scholar
39. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Wideband planar array antenna based on SCRLH-TL for airborne synthetic aperture radar application," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 12, 1586-1599, 2018.
doi:10.1080/09205071.2018.1460280 Google Scholar
40. Alibakhshikenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Bandwidth and radiation specifications enhancement of monopole antennas loaded with split ring resonators," IET Microwaves, Antennas & Propagation, Vol. 09, 1487-1496, 2015.
doi:10.1049/iet-map.2015.0172 Google Scholar
41. Alibakhshikenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Composite right-left-handed- based antenna with wide applications in very-high frequency-ultra-high frequency bands for radio transceivers," IET Microwaves, Antennas & Propagation, Vol. 09, 1713-1726, 2015.
doi:10.1049/iet-map.2015.0308 Google Scholar
42. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers," IET Microwaves, Antennas & Propagation, Vol. 10, 1682-1691, 2016.
doi:10.1049/iet-map.2016.0069 Google Scholar
43. Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti, "Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices andmultiband wireless communication systems," IET Microwaves, Antennas & Propagation, Vol. 12, 1080-1086, 2018.
doi:10.1049/iet-map.2016.1141 Google Scholar
44. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, A. Ali, F. Falcone, and E. Limiti, "Wideband printed monopole antenna for application in wireless communication systems," IET Microwaves, Antennas & Propagation, Vol. 12, 1222-1230, 2018.
doi:10.1049/iet-map.2017.0894 Google Scholar
45. Alibakhshikenari, M., B. S. Virdee, M. Khalily, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Beam-scanning leaky-wave antenna based on CRLH-metamaterial for millimetre-wave applications," IET Microwaves, Antennas & Propagation, Vol. 13, 1129-1133, 2019.
doi:10.1049/iet-map.2018.5101 Google Scholar
46. Alibakhshikenari, M., M. Khalily, B. S. Virdee, A. Ali, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Double-port slotted-antenna with multiple miniaturized radiatorsfor wideband wireless communication systemsand portable devices," Progress In Electromagnetics Research C, Vol. 90, 1-13, 2019.
doi:10.2528/PIERC18011204 Google Scholar
47. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Overcome the limitations of performance parameters of on-chip antennas based on metasurface and coupled Feeding approaches for applications in system-on-chip for THz integrated-circuits," IEEE Asia-Pacific Microwave Conference, 2019. Google Scholar
48. Alibakhshikenari, M., B. S. Virdee, M. Khalily, C. H. See, R. Abd-Alhameed, F. Falcone, T. A. Denidni, and E. Limiti, "High-gain on-chip antenna design on silicon layerwith aperture excitation for terahertz applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, 1576-1580, 2020.
doi:10.1109/LAWP.2020.3010865 Google Scholar
49. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Impedance matching network based on metasurfaces (2-d metamaterials) for electrically small antennas," IEEE International Symposium on Antennas and Propagation and North America Radio Science Meeting, 2020. Google Scholar
50. Alibakhshikenari, M., B. S. Virdee, P. Shukla, Y. Wang, L. Azpilicueta, M. Naser-Moghadasi, C. H. See, I. Elfergani, C. Zebiri, R. Abd-Alhameed, I. Huynen, J. Rodriguez, T. A. Denidni, F. Falcone, and E. Limiti, "Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network," IEEE Access, Vol. 09, 67916-67927, 2021.
doi:10.1109/ACCESS.2021.3076975 Google Scholar
51. Alibakhshikenari, M., B. S. Virdee, P. Shukla, N. O. Parchin, L. Azpilicueta, C. H. See, R. Abd-Alhameed, F. Falcone, and I. Huynen, "Metamaterial-inspired antenna array for application in microwave breast imagingsystems for tumor detection," IEEE Access, Vol. 08, 174667-174678, 2020.
doi:10.1109/ACCESS.2020.3025672 Google Scholar
52. Alibakhshikenari, M., F. Babaeian, B. S. Virdee, S. Aissa, L. Azpilicueta, C. H. See, A. A. Althuwayb, I. Huynen, R. Abd-Alhamee, F. Falcone, and E. Limiti, "A comprehensive survey on various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems," IEEE Access, Vol. 08, 192965-193004, 2020.
doi:10.1109/ACCESS.2020.3032826 Google Scholar
53. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Meta-surface wall suppression of mutual coupling betweenmicrostrip patch antenna arrays for THz-band applications," Progress In Electromagnetics Research Letters, Vol. 75, 105-111, 2018.
doi:10.2528/PIERL18021908 Google Scholar
54. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. Abd-Alhameed, M. Khalily, F. Falcone, and E. Limiti, "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 07, 198, 2018.
doi:10.3390/electronics7090198 Google Scholar
55. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, A. H. Ali, F. Falcone, and E. Limiti, "Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagneticbandgap structures," IET Microwaves, Antennas & Propagation, Vol. 12, 2241-2247, 2018.
doi:10.1049/iet-map.2018.5103 Google Scholar
56. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, K. Quazzane, and E. Limiti, "Isolation enhancement of densely packed array antennas with periodic MTM-photonicbandgap for SAR and MIMO systems," IET Microwaves, Antennas & Propagation, Vol. 14, 183-188, 2020.
doi:10.1049/iet-map.2019.0362 Google Scholar
57. Alibakhshikenari, M., M. Khalily, B. S. Virdee, C. H. See, R. Abd-Alhameed, and E. Limiti, "Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading," IEEE Access, Vol. 07, 23606-23614, 2019.
doi:10.1109/ACCESS.2019.2899326 Google Scholar
58. Alibakhshikenari, M., M. Khalily, B. S. Virdee, C. H. See, R. Abd-Alhameed, and E. Limiti, "Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slabfor densely packed array antennas," IEEE Access, Vol. 07, 51827-51840, 2019.
doi:10.1109/ACCESS.2019.2909950 Google Scholar
59. Alibakhshikenari, M., M. Vittori, S. Colangeli, B. S. Virdee, A. Andujar, J. Anguera, and E. Limiti, "EM isolation enhanced based on metamaterial concept in antenna array system to support full-duplex application," IEEE Asia Pacific Microwave Conference, 2017. Google Scholar
60. Alibakhshikenari, M., B. S. Virdee, M. Khalily, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "A new study to suppress mutual-coupling between waveguide slot array antennas based on metasurface bulkhead forMIMO systems," IEEE Asia Pacific Microwave Conference, 2018. Google Scholar
61. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "A technique to suppress mutual coupling in densely packed antenna arrays usingmetamaterial supersubstrate," 12th European Conference on Antennas and Propagation, 2018. Google Scholar
62. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, A. Andujar, J. Anguera, and E. Limiti, "Study on antenna mutual coupling suppression using integrated metasurface isolator for SAR and MIMO applications," 48th European Microwave Conference, 2018. Google Scholar
63. Saghati, A. P., A. P. Saghati, and K. Entesari, "An ultra-miniature SIW cavity-backed slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 313-316, 2016. Google Scholar
64. Lajevardi, M. E. and M. Kamyab, "Ultra-miniaturized metamaterial-inspired SIW textile antenna for off-body applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3155-3158, 2017.
doi:10.1109/LAWP.2017.2766201 Google Scholar
65. Dong, Y. and T. Itoh, "Miniaturized substrate integrated waveguide slot antennas based on negative order resonance," IEEE Transactions on Antennas and Propagation, Vol. 58, 3856-3864, 2010.
doi:10.1109/TAP.2010.2078449 Google Scholar
66. Pandit, S., A. Mohan, and P. Ray, "A low-profile high-gain substrate integrated waveguide slot antenna with suppressed cross-polarization using metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1614-1617, 2017. Google Scholar
67. Pandit, S., A. Mohan, and P. Roy, "Metamaterial-inspired low-profile high-gain slot antenna," Microwave and Optical Technology Letters, 1-6, 2019. Google Scholar
68. Pandit, S., A. Mohan, and P. Roy, "Square-ring metamaterial for radiation characteristics enhancement of an SIW cavity-backed slot antenna," International Journal of RF and Microwave Computer-Aided Engineering, e21981, 1-8, 2019. Google Scholar
69. Althuwayb, A. A., "Enhanced radiation gain and efficiency of a metamaterial-inspired wideband microstrip antenna using substrate integrated waveguide technology for sub-6 GHz wireless communication systems," Microwave and Optical Technology Letters, Vol. 63, 1892-1898, 2021. Google Scholar
70. Dong, Y. and T. Itoh, "Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures," IEEE Transactions on Antennas and Propagation, Vol. 59, 767-775, 2011. Google Scholar
71. Haghighi, S. S., A.-A. Heidari, and M. Movahhedi, "Three-band substrate integrated waveguide leaky-wave antenna based on composite right/left-handed structure," IEEE Transactions on Antennas and Propagation, Vol. 63, 4578-4582, 2015. Google Scholar
72. Nasimuddin, Z. N. Chen, and X. Qing, "Multilayered composite right/left-handed leaky-wave antenna with consistent gain," IEEE Transactions on Antennas and Propagation, Vol. 60, 5056-5062, 2012. Google Scholar
73. Sarkar, A., M. Adhikary, A. Sharma, A. Biswas, and M. J. Akhtar, "Composite right/left-handed compact and high-gain leaky-wave antenna using complementary spiral resonator on HMSIW for Ku band applications," IET Microwaves, Antennas & Propagation, Vol. 12, 1310-1315, 2018. Google Scholar
74. Alibakshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "High-isolation leaky-wave array antenna based on CRLH-metamaterial implemented on SIW with +-30◦ frequency beam-scanning capability at millimetre-waves," Electronics, Vol. 8, 1-15, 2019. Google Scholar
75. Sarkar, A., A. Sharma, A. Biswas, and M. J. Akhtar, "EMSIW-based compact high gain wide full space scanning LWA with improved broadside radiation profile," IEEE Transactions on Antennas and Propagation, Vol. 67, 5652-5657, 2019. Google Scholar
76. Cai, Y., S. Li, T. Wu, and Y. Cao, "A simple configuration of beam steering substrate integrated waveguide aperture antenna loaded with metamaterials," Microwave and Optical Technology Letters, Vol. 64, 744-749, 2022. Google Scholar
77. Dong, Y. and T. Itoh, "Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application," IEEE Transactions on Antennas and Propagation, Vol. 60, 760-771, 2012. Google Scholar
78. Zhai, G., Z. N. Chen, and X. Qing, "Enhanced isolation of a closely-spaced four-element MIMO antenna system using metamaterial mushroom," IEEE Transactions on Antennas and Propagation, Vol. 63, 3362-3370, 2015. Google Scholar
79. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Mutual-coupling reduction in metamaterial substrate integrated waveguide slotted antenna arrays using metal fence isolators for SAR and MIMO applications," 12th International Congress on Artificial Materials for Novel Wave Phenomena, 2018. Google Scholar
80. Alibakhshikenari, M., B. S. Virdee, M. Khalily, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "New approach to suppress mutual coupling between longitudinal-slotted arrays based on SIW antenna loaded with metal-fences working on VHF/UHF frequency-bands: Study, investigation, and principle," Asia-Pacific Microwave Conference, 2018. Google Scholar
81. Alibakhshikenari, M. and B. S. Virdee, "Study on isolation and radiation behaviours of a 34 x 34 array-antennas based on SIW and metasurface properties for applications in terahertz band over 125-300 GHz," Optik, Vol. 206, 163222, 2020. Google Scholar
82. Cai, Y., Y. Zhang, L. Yang, Y. Cao, and Z. Qian, "Design of low-profile metamaterials-loaded substrate integrated waveguide horn antenna and its array applications," IEEE Transactions on Antennas and Propagation, Vol. 65, 3732-3737, 2017. Google Scholar
83. Murad, N. A., M. W. Almesheshe, O. Ayop, and M. K. A. Rahim, "Wideband metamaterial substrate integrated waveguide antenna for millimeterwave applications," IEEE International RF and Microwave Conference, 2020. Google Scholar
84. Ameen, M., A. Mishra, and R. K. Chaudhary, "Compact open-ended SIW antenna based on CRLH-TL and U-shaped slots for Ku-band application," International Journal of Electronics and Communication (AEU), Vol. 131, 1-11, 2021. Google Scholar
85. Kumari, V., W. Bhowmik, and S. Srivastava, "Design of high-gain SIW and HMSIW H-plane horn antenna using metamaterial," International Journal of Microwave and Wireless Technologies, Vol. 07, 713-720, 2015. Google Scholar
86. El-Nady, S., R. R. Elsharkawy, A. I. Afifi, and A. S. Abd El-Hameed, "Performance improvement of substrate integrated cavity fed dipole array antenna using ENZ metamaterial for 5G applications," Sensors, Vol. 22, 1-12, 2022. Google Scholar
87. Alibakhshikenari, M., E. M. Ali, M. Soruri, M. Dalarsson, M. Naser-Moghadasi, B. S. Virdee, C. Stefanovic, A. Pietrenko-Dabrowska, S. Koziel, S. Szczepanski, and E. Limiti, "A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems," IEEE Access, Vol. 10, 3668-3692, 2022. Google Scholar
88. Althuwayb, A. A., M. Alibakhshikenari, B. S. Virdee, H. Benetatos, F. Falcone, and E. Limiti, "Antenna on Chip (AOC) design using metasurface and SIW technologies for THz wireless applications," Electronics, Vol. 10, 1120, 2021. Google Scholar
89. Alibakhshikenari, M., B. S. Virdee, A. A. Althuwayb, D. Mariyanayagam, and E. Limiti, "Compact and low-profile on-chip antenna using underside electromagnetic coupling mechanism for terahertzfront-end transceivers," Electronics, Vol. 10, 1264, 2021. Google Scholar
90. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "A novel 0.3-0.31 THz GaAs-based transceiver withon-chip slotted metamaterial antenna based on SIW technology," IEEE Asia-Pacific Microwave Conference, 2019. Google Scholar
91. Alibakhshikenari, M., B. S. Virdee, A. A. Althuwayb, S. Aissa, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Study on on-chip antenna design based on metamaterial-inspired and substrate-integrated waveguide properties for millimetre-wave and THzintegrated-circuit applications," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 42, 17-28, 2021, (https://creativecommons.org/licenses/by/4.0/). Google Scholar
92. Loghmannia, P., M. Kamyab, M. R. Nikkah, and R. Rezaiesarlak, "Miniaturized low-cost phased-array antennausing SIW slot elements," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1434-1437, 2012. Google Scholar
93. Celenk, E. and N. T. Tokan, "Frequency scanning conformal sensor based on SIW metamaterial antenna," IEEE Sensors Journal, Vol. 21, 16015-16023, 2021. Google Scholar
94. Nitas, M., V. Salonikios, S. Raptis, and T. V. Yioultsis, "Design of fully planar cost-effective metamaterial-enhanced SIW antennas for 5G applications," 16th European International Conference on Antennas and Propagation, 2022. Google Scholar
95. Nitas, M., M. T. Passia, and T. V. Yioultsis, "Fully planar slow-wave substrate integrated waveguide based on broadside-coupled complementary split ring resonators for mmwave and 5G components," IET Microwaves, Antennas & Propagation, Vol. 14, 1096-1107, 2020. Google Scholar
96. Dong, Y., V. Zhurbenko, K. Kaslis, J. M. Bjorstorp, and T. M. Johansen, "Wideband split-ring antenna arrays based on substrate integrated waveguide for Ka-band applications," International Journal of Microwave and Wireless Technologies, Vol. 14, 524-536, 2022. Google Scholar
97. Hu, B., T. Wu, Y. Cai, W. Zhang, and B. L. Zhang, "A novel metamaterial-based planar integrated Luneburg lens antenna with wide bandwidth and high gain," IEEE Access, Vol. 08, 4708-4713, 2020. Google Scholar
98. Feng, C., T. Shi, and L. Wang, "Novel broadband Bow-Tie antenna based on complementary split- ring resonators enhanced substrate-integrated waveguide," IEEE Access, Vol. 07, 12397-12404, 2019. Google Scholar
99. Jin, C. and A. Alphones, "Leaky-wave radiation behavior from a double periodic composite right/left-handed substrate integrated waveguide," IEEE Transactions on Antennas and Propagation, Vol. 60, 1727-1735, 2012. Google Scholar