Vol. 96
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-08-24
A Review on Metamaterial Application in Microstrip and Substrate Integrated Waveguide Antenna Designs
By
Progress In Electromagnetics Research B, Vol. 96, 87-132, 2022
Abstract
Metamaterials are artificially configured composite materials exhibiting unique characteristics such as negative effective permittivity and permeability. Due to these distinctive characteristics, metamaterials have drawn special attention in designing novel antenna structures and improving antenna performances. The application of metamaterial in antenna technology significantly brings miniaturization to the antenna structure, enhances the impedance bandwidth, gain, and efficiency of the antenna as well as improves isolation between the MIMO antenna elements. The substrate integrated waveguide (SIW) reduces the conductor and dielectric loss, and surface waεve excitations in the antennas. Although an overview of the performance enhancement of microstrip patch antennas under the influence of metamaterial has been incorporated in this article, the authors have put more effort in presenting a detailed study on working mechanism of metamaterial-based SIW antennas. Thus, a detailed review of the novel designs of metamaterial-inspired SIW cavity-backed slot antennas (CBSA), leaky-wave antennas (LWA), aperture antennas, and H-plane horn antennas has been included. The theoretical background of the metamaterials characteristics has been presented. Moreover, the working principles of metamaterial-based SIW CBSAs, SIW LWAs, SIW aperture antennas, and SIW H-plane horn antennas have been thoroughly outlined in obtaining antenna miniaturization, gain enhancement, beam steering through frequency scanning, polarization flexibility, bandwidth broadening, and isolation improvement. Besides this, a study has also been included in eliminating the limitations of SIW on-chip antennas such as narrow bandwidth, low gain, and efficiency by including metamaterial/metasurface in the antenna designs. Although the emphasis has been given to elaborating the attractive antenna performances, some design limitations have also been identified, and those need further investigation. This survey brings up not only the conceptual framework of the attractive characteristics of metamaterial, the design methodology of the non-resonant type metamaterial in the SIW environment, and the working principles of metamaterial-inspired SIW antennas but also the design limitations. Thus, consideration can be given to this article as the potential design guidelines of the metamaterial-based SIW antennas, and possible ideas can be obtained for doing further advanced research on the identified research gaps.
Citation
Wriddhi Bhowmik, Bhargav Appasani, Amit K. Jha, and Shweta Srivastava, "A Review on Metamaterial Application in Microstrip and Substrate Integrated Waveguide Antenna Designs," Progress In Electromagnetics Research B, Vol. 96, 87-132, 2022.
doi:10.2528/PIERB22052401
References

1. Jung, J., W. Choi, and J. Choi, "A small wideband microstrip-fed monopole antenna," IEEE Microwave and Wireless Component Letters, Vol. 15, 703-705, 2005.
doi:10.1109/LMWC.2005.856834        Google Scholar

2. Tseng, C.-F., C.-L. Huang, and C.-H. Hsu, "Microstrip fed monopole antenna with a shorted parasitic element for wideband application," Progress In Electromagnetics Research Letters, Vol. 7, 115-125, 2009.
doi:10.2528/PIERL09021206        Google Scholar

3. Luk, K. M. and S. H. Wong, "A printed high-gain monopole antenna for indoor wireless LANs," Microwave and Optical Technology Letters, Vol. 41, 177-180, 2004.
doi:10.1002/mop.20085        Google Scholar

4. Sihvola, A., "Metamaterials in electromagnetics," Metamaterials, Vol. 2, 2-11, 2007.
doi:10.1016/j.metmat.2007.02.003        Google Scholar

5. Cui, T. J., D. R. Smith, and R. Liu, Metamaterials: Theory, Design and Applications, Springer, 2009.

6. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, 2113-2130, 2006.
doi:10.1109/TAP.2006.877179        Google Scholar

7. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 55, 13-25, 2007.
doi:10.1109/TAP.2006.888401        Google Scholar

8. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Transactions on Antennas and Propagation, Vol. 60, 2175-2182, 2012.
doi:10.1109/TAP.2012.2189699        Google Scholar

9. Panda, P. K. and D. Ghosh, "Isolation and gain enhancement of patch antennas using EMNZ superstrate," International Journal of Electronics and Communication (AEU), Vol. 86, 164-170, 2018.
doi:10.1016/j.aeue.2018.01.037        Google Scholar

10. Li, D., Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, 6018-6023, 2012.
doi:10.1109/TAP.2012.2213231        Google Scholar

11. Guo, Y., G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou, "Efficient modeling of novel uniplanar left-handed metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1462-1468, 2005.
doi:10.1109/TMTT.2005.845204        Google Scholar

12. Alsath, M. G. N., M. Kanagasabai, and B. Balasubramanian, "Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 15-18, 2013.
doi:10.1109/LAWP.2012.2237156        Google Scholar

13. Thummaluru, S. R. and R. K. Chaudhary, "Mu-negative metamaterial filter-based isolation technique for MIMO antennas," Electronics Letters, Vol. 53, 644-646, 2017.
doi:10.1049/el.2017.0809        Google Scholar

14. Pozar, D. M., Microwave Engineering, John Willey & Sons, 2011.

15. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 66-73, 2005.
doi:10.1109/TMTT.2004.839303        Google Scholar

16. Kordiboroujeni, Z. and J. Bornemann, "Designing the width of substrate integrated waveguide structures," IEEE Microwave and Wireless Components Letters, Vol. 23, 518-520, 2013.
doi:10.1109/LMWC.2013.2279098        Google Scholar

17. Alu, A., N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas and Propagation Magazine, Vol. 49, 23-36, 2007.
doi:10.1109/MAP.2007.370979        Google Scholar

18. Milias, C., R. B. Andersen, P. I. Lazaridis, Z. D. Zaharis, B. Muhammad, J. T. B. Kristensen, A. Mihovska, and D. D. S. Hermanse, "Metamaterial-inspired antennas: A review of the state of the art and future design challenges," IEEE Access, Vol. 09, 89846-89865, 2021.
doi:10.1109/ACCESS.2021.3091479        Google Scholar

19. Jokanovic, B., R. H. Geschke, T. S. Beukman, and V. Milosevic, "Metamaterials: Characteristics, design and microwave applications," SAIEE African Research Journal, Vol. 101, 82-92, 2010.
doi:10.23919/SAIEE.2010.8531553        Google Scholar

20. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699        Google Scholar

21. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773        Google Scholar

22. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2081, 1999.
doi:10.1109/22.798002        Google Scholar

23. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 60, 772-785, 2012.
doi:10.1109/TAP.2011.2173120        Google Scholar

24. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Physical Review Letters, Vol. 93, 197401-1-4, 2004.
doi:10.1103/PhysRevLett.93.197401        Google Scholar

25. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184        Google Scholar

26. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 05, 34-50, 2004.
doi:10.1109/MMW.2004.1337766        Google Scholar

27. Alibakhshikenari, M., B. S. Virdee, L. Azpilicueta, M. Naser-Moghadasi, M. O. Akinsolu, C. H. See, B. Liu, R. A. ABD-Alhameed, F. Falcone, I. Huynen, T. A. Denidni, and E. Limiti, "A comprehensive survey of metamaterial transmission-line based antennas: Design, challenges, and applications," IEEE Access, Vol. 08, 144778-144808, 2020.
doi:10.1109/ACCESS.2020.3013698        Google Scholar

28. Alibakhshikenari, M., "Printed planar patch antennas based on metamaterial," International Journal of Electronics Letters, Vol. 02, 37-42, 2014.
doi:10.1080/21681724.2013.874042        Google Scholar

29. Sadeghzadeh, R. A., M. Alibakhshikenari, and M. Naser-Moghadasi, "UWB antenna based on SCRLH-TLs for portable wireless devices," Microwave and Optical Technology Letters, Vol. 58, 69-71, 2016.
doi:10.1002/mop.29491        Google Scholar

30. Alibakhshikenari, M., A. Andujar, and J. Anguera, "New compact printed leaky-wave antenna with beam steering," Microwave and Optical Technology Letters, Vol. 58, 215-217, 2016.
doi:10.1002/mop.29538        Google Scholar

31. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, and B. S. Virdee, "Metamaterial-based antennas for integration in UWB transceivers and portable microwave handsets," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, 88-96, 2016.
doi:10.1002/mmce.20942        Google Scholar

32. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "New compact antenna based on simplified CRLH-TL for UWB wireless communication systems," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, 217-225, 2016.
doi:10.1002/mmce.20956        Google Scholar

33. Alibakhshikenari, M., M. Naser-Moghadasi, B. S. Virdee, A. Andujar, and J. Anguera, "Compact antenna based on a composite right/left-handed transmission line," Microwave and Optical Technology Letters, Vol. 57, 1785-1788, 2015.
doi:10.1002/mop.29191        Google Scholar

34. Alibakhshikenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "The resonating MTM-based miniaturized antennas for wide-band RF-microwave systems," Microwave and Optical Technology Letters, Vol. 57, 2339-2344, 2015.
doi:10.1002/mop.29328        Google Scholar

35. Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti, "A novel monofilar-archimedean metamaterial inspired leaky-wave antenna for scanning application for passive radar system," Microwave and Optical Technology Letters, Vol. 60, 2055-2060, 2018.
doi:10.1002/mop.31300        Google Scholar

36. Alibakhshikenari, M. and M. Naser-Moghadasi, "Novel UWB miniaturized integrated antenna based on CRLH metamaterial transmission lines," International Journal of Electronics and Communication (AEU), Vol. 69, 1143-1149, 2015.
doi:10.1016/j.aeue.2015.04.017        Google Scholar

37. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Bandwidth extension of planar antennas using embedded slits for reliable multiband RF communications," International Journal of Electronics and Communication (AEU), Vol. 70, 910-919, 2016.
doi:10.1016/j.aeue.2016.04.003        Google Scholar

38. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Travelling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications," International Journal of Electronics and Communication (AEU), Vol. 70, 1645-1650, 2016.
doi:10.1016/j.aeue.2016.10.003        Google Scholar

39. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Wideband planar array antenna based on SCRLH-TL for airborne synthetic aperture radar application," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 12, 1586-1599, 2018.
doi:10.1080/09205071.2018.1460280        Google Scholar

40. Alibakhshikenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Bandwidth and radiation specifications enhancement of monopole antennas loaded with split ring resonators," IET Microwaves, Antennas & Propagation, Vol. 09, 1487-1496, 2015.
doi:10.1049/iet-map.2015.0172        Google Scholar

41. Alibakhshikenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Composite right-left-handed- based antenna with wide applications in very-high frequency-ultra-high frequency bands for radio transceivers," IET Microwaves, Antennas & Propagation, Vol. 09, 1713-1726, 2015.
doi:10.1049/iet-map.2015.0308        Google Scholar

42. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers," IET Microwaves, Antennas & Propagation, Vol. 10, 1682-1691, 2016.
doi:10.1049/iet-map.2016.0069        Google Scholar

43. Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti, "Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices andmultiband wireless communication systems," IET Microwaves, Antennas & Propagation, Vol. 12, 1080-1086, 2018.
doi:10.1049/iet-map.2016.1141        Google Scholar

44. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, A. Ali, F. Falcone, and E. Limiti, "Wideband printed monopole antenna for application in wireless communication systems," IET Microwaves, Antennas & Propagation, Vol. 12, 1222-1230, 2018.
doi:10.1049/iet-map.2017.0894        Google Scholar

45. Alibakhshikenari, M., B. S. Virdee, M. Khalily, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Beam-scanning leaky-wave antenna based on CRLH-metamaterial for millimetre-wave applications," IET Microwaves, Antennas & Propagation, Vol. 13, 1129-1133, 2019.
doi:10.1049/iet-map.2018.5101        Google Scholar

46. Alibakhshikenari, M., M. Khalily, B. S. Virdee, A. Ali, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Double-port slotted-antenna with multiple miniaturized radiatorsfor wideband wireless communication systemsand portable devices," Progress In Electromagnetics Research C, Vol. 90, 1-13, 2019.
doi:10.2528/PIERC18011204        Google Scholar

47. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Overcome the limitations of performance parameters of on-chip antennas based on metasurface and coupled Feeding approaches for applications in system-on-chip for THz integrated-circuits," IEEE Asia-Pacific Microwave Conference, 2019.        Google Scholar

48. Alibakhshikenari, M., B. S. Virdee, M. Khalily, C. H. See, R. Abd-Alhameed, F. Falcone, T. A. Denidni, and E. Limiti, "High-gain on-chip antenna design on silicon layerwith aperture excitation for terahertz applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, 1576-1580, 2020.
doi:10.1109/LAWP.2020.3010865        Google Scholar

49. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Impedance matching network based on metasurfaces (2-d metamaterials) for electrically small antennas," IEEE International Symposium on Antennas and Propagation and North America Radio Science Meeting, 2020.        Google Scholar

50. Alibakhshikenari, M., B. S. Virdee, P. Shukla, Y. Wang, L. Azpilicueta, M. Naser-Moghadasi, C. H. See, I. Elfergani, C. Zebiri, R. Abd-Alhameed, I. Huynen, J. Rodriguez, T. A. Denidni, F. Falcone, and E. Limiti, "Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network," IEEE Access, Vol. 09, 67916-67927, 2021.
doi:10.1109/ACCESS.2021.3076975        Google Scholar

51. Alibakhshikenari, M., B. S. Virdee, P. Shukla, N. O. Parchin, L. Azpilicueta, C. H. See, R. Abd-Alhameed, F. Falcone, and I. Huynen, "Metamaterial-inspired antenna array for application in microwave breast imagingsystems for tumor detection," IEEE Access, Vol. 08, 174667-174678, 2020.
doi:10.1109/ACCESS.2020.3025672        Google Scholar

52. Alibakhshikenari, M., F. Babaeian, B. S. Virdee, S. Aissa, L. Azpilicueta, C. H. See, A. A. Althuwayb, I. Huynen, R. Abd-Alhamee, F. Falcone, and E. Limiti, "A comprehensive survey on various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems," IEEE Access, Vol. 08, 192965-193004, 2020.
doi:10.1109/ACCESS.2020.3032826        Google Scholar

53. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Meta-surface wall suppression of mutual coupling betweenmicrostrip patch antenna arrays for THz-band applications," Progress In Electromagnetics Research Letters, Vol. 75, 105-111, 2018.
doi:10.2528/PIERL18021908        Google Scholar

54. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. Abd-Alhameed, M. Khalily, F. Falcone, and E. Limiti, "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 07, 198, 2018.
doi:10.3390/electronics7090198        Google Scholar

55. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, A. H. Ali, F. Falcone, and E. Limiti, "Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagneticbandgap structures," IET Microwaves, Antennas & Propagation, Vol. 12, 2241-2247, 2018.
doi:10.1049/iet-map.2018.5103        Google Scholar

56. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, K. Quazzane, and E. Limiti, "Isolation enhancement of densely packed array antennas with periodic MTM-photonicbandgap for SAR and MIMO systems," IET Microwaves, Antennas & Propagation, Vol. 14, 183-188, 2020.
doi:10.1049/iet-map.2019.0362        Google Scholar

57. Alibakhshikenari, M., M. Khalily, B. S. Virdee, C. H. See, R. Abd-Alhameed, and E. Limiti, "Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading," IEEE Access, Vol. 07, 23606-23614, 2019.
doi:10.1109/ACCESS.2019.2899326        Google Scholar

58. Alibakhshikenari, M., M. Khalily, B. S. Virdee, C. H. See, R. Abd-Alhameed, and E. Limiti, "Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slabfor densely packed array antennas," IEEE Access, Vol. 07, 51827-51840, 2019.
doi:10.1109/ACCESS.2019.2909950        Google Scholar

59. Alibakhshikenari, M., M. Vittori, S. Colangeli, B. S. Virdee, A. Andujar, J. Anguera, and E. Limiti, "EM isolation enhanced based on metamaterial concept in antenna array system to support full-duplex application," IEEE Asia Pacific Microwave Conference, 2017.        Google Scholar

60. Alibakhshikenari, M., B. S. Virdee, M. Khalily, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "A new study to suppress mutual-coupling between waveguide slot array antennas based on metasurface bulkhead forMIMO systems," IEEE Asia Pacific Microwave Conference, 2018.        Google Scholar

61. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "A technique to suppress mutual coupling in densely packed antenna arrays usingmetamaterial supersubstrate," 12th European Conference on Antennas and Propagation, 2018.        Google Scholar

62. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, A. Andujar, J. Anguera, and E. Limiti, "Study on antenna mutual coupling suppression using integrated metasurface isolator for SAR and MIMO applications," 48th European Microwave Conference, 2018.        Google Scholar

63. Saghati, A. P., A. P. Saghati, and K. Entesari, "An ultra-miniature SIW cavity-backed slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 313-316, 2016.        Google Scholar

64. Lajevardi, M. E. and M. Kamyab, "Ultra-miniaturized metamaterial-inspired SIW textile antenna for off-body applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3155-3158, 2017.
doi:10.1109/LAWP.2017.2766201        Google Scholar

65. Dong, Y. and T. Itoh, "Miniaturized substrate integrated waveguide slot antennas based on negative order resonance," IEEE Transactions on Antennas and Propagation, Vol. 58, 3856-3864, 2010.
doi:10.1109/TAP.2010.2078449        Google Scholar

66. Pandit, S., A. Mohan, and P. Ray, "A low-profile high-gain substrate integrated waveguide slot antenna with suppressed cross-polarization using metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1614-1617, 2017.        Google Scholar

67. Pandit, S., A. Mohan, and P. Roy, "Metamaterial-inspired low-profile high-gain slot antenna," Microwave and Optical Technology Letters, 1-6, 2019.        Google Scholar

68. Pandit, S., A. Mohan, and P. Roy, "Square-ring metamaterial for radiation characteristics enhancement of an SIW cavity-backed slot antenna," International Journal of RF and Microwave Computer-Aided Engineering, e21981, 1-8, 2019.        Google Scholar

69. Althuwayb, A. A., "Enhanced radiation gain and efficiency of a metamaterial-inspired wideband microstrip antenna using substrate integrated waveguide technology for sub-6 GHz wireless communication systems," Microwave and Optical Technology Letters, Vol. 63, 1892-1898, 2021.        Google Scholar

70. Dong, Y. and T. Itoh, "Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures," IEEE Transactions on Antennas and Propagation, Vol. 59, 767-775, 2011.        Google Scholar

71. Haghighi, S. S., A.-A. Heidari, and M. Movahhedi, "Three-band substrate integrated waveguide leaky-wave antenna based on composite right/left-handed structure," IEEE Transactions on Antennas and Propagation, Vol. 63, 4578-4582, 2015.        Google Scholar

72. Nasimuddin, Z. N. Chen, and X. Qing, "Multilayered composite right/left-handed leaky-wave antenna with consistent gain," IEEE Transactions on Antennas and Propagation, Vol. 60, 5056-5062, 2012.        Google Scholar

73. Sarkar, A., M. Adhikary, A. Sharma, A. Biswas, and M. J. Akhtar, "Composite right/left-handed compact and high-gain leaky-wave antenna using complementary spiral resonator on HMSIW for Ku band applications," IET Microwaves, Antennas & Propagation, Vol. 12, 1310-1315, 2018.        Google Scholar

74. Alibakshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "High-isolation leaky-wave array antenna based on CRLH-metamaterial implemented on SIW with +-30◦ frequency beam-scanning capability at millimetre-waves," Electronics, Vol. 8, 1-15, 2019.        Google Scholar

75. Sarkar, A., A. Sharma, A. Biswas, and M. J. Akhtar, "EMSIW-based compact high gain wide full space scanning LWA with improved broadside radiation profile," IEEE Transactions on Antennas and Propagation, Vol. 67, 5652-5657, 2019.        Google Scholar

76. Cai, Y., S. Li, T. Wu, and Y. Cao, "A simple configuration of beam steering substrate integrated waveguide aperture antenna loaded with metamaterials," Microwave and Optical Technology Letters, Vol. 64, 744-749, 2022.        Google Scholar

77. Dong, Y. and T. Itoh, "Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application," IEEE Transactions on Antennas and Propagation, Vol. 60, 760-771, 2012.        Google Scholar

78. Zhai, G., Z. N. Chen, and X. Qing, "Enhanced isolation of a closely-spaced four-element MIMO antenna system using metamaterial mushroom," IEEE Transactions on Antennas and Propagation, Vol. 63, 3362-3370, 2015.        Google Scholar

79. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Mutual-coupling reduction in metamaterial substrate integrated waveguide slotted antenna arrays using metal fence isolators for SAR and MIMO applications," 12th International Congress on Artificial Materials for Novel Wave Phenomena, 2018.        Google Scholar

80. Alibakhshikenari, M., B. S. Virdee, M. Khalily, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "New approach to suppress mutual coupling between longitudinal-slotted arrays based on SIW antenna loaded with metal-fences working on VHF/UHF frequency-bands: Study, investigation, and principle," Asia-Pacific Microwave Conference, 2018.        Google Scholar

81. Alibakhshikenari, M. and B. S. Virdee, "Study on isolation and radiation behaviours of a 34 x 34 array-antennas based on SIW and metasurface properties for applications in terahertz band over 125-300 GHz," Optik, Vol. 206, 163222, 2020.        Google Scholar

82. Cai, Y., Y. Zhang, L. Yang, Y. Cao, and Z. Qian, "Design of low-profile metamaterials-loaded substrate integrated waveguide horn antenna and its array applications," IEEE Transactions on Antennas and Propagation, Vol. 65, 3732-3737, 2017.        Google Scholar

83. Murad, N. A., M. W. Almesheshe, O. Ayop, and M. K. A. Rahim, "Wideband metamaterial substrate integrated waveguide antenna for millimeterwave applications," IEEE International RF and Microwave Conference, 2020.        Google Scholar

84. Ameen, M., A. Mishra, and R. K. Chaudhary, "Compact open-ended SIW antenna based on CRLH-TL and U-shaped slots for Ku-band application," International Journal of Electronics and Communication (AEU), Vol. 131, 1-11, 2021.        Google Scholar

85. Kumari, V., W. Bhowmik, and S. Srivastava, "Design of high-gain SIW and HMSIW H-plane horn antenna using metamaterial," International Journal of Microwave and Wireless Technologies, Vol. 07, 713-720, 2015.        Google Scholar

86. El-Nady, S., R. R. Elsharkawy, A. I. Afifi, and A. S. Abd El-Hameed, "Performance improvement of substrate integrated cavity fed dipole array antenna using ENZ metamaterial for 5G applications," Sensors, Vol. 22, 1-12, 2022.        Google Scholar

87. Alibakhshikenari, M., E. M. Ali, M. Soruri, M. Dalarsson, M. Naser-Moghadasi, B. S. Virdee, C. Stefanovic, A. Pietrenko-Dabrowska, S. Koziel, S. Szczepanski, and E. Limiti, "A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems," IEEE Access, Vol. 10, 3668-3692, 2022.        Google Scholar

88. Althuwayb, A. A., M. Alibakhshikenari, B. S. Virdee, H. Benetatos, F. Falcone, and E. Limiti, "Antenna on Chip (AOC) design using metasurface and SIW technologies for THz wireless applications," Electronics, Vol. 10, 1120, 2021.        Google Scholar

89. Alibakhshikenari, M., B. S. Virdee, A. A. Althuwayb, D. Mariyanayagam, and E. Limiti, "Compact and low-profile on-chip antenna using underside electromagnetic coupling mechanism for terahertzfront-end transceivers," Electronics, Vol. 10, 1264, 2021.        Google Scholar

90. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "A novel 0.3-0.31 THz GaAs-based transceiver withon-chip slotted metamaterial antenna based on SIW technology," IEEE Asia-Pacific Microwave Conference, 2019.        Google Scholar

91. Alibakhshikenari, M., B. S. Virdee, A. A. Althuwayb, S. Aissa, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Study on on-chip antenna design based on metamaterial-inspired and substrate-integrated waveguide properties for millimetre-wave and THzintegrated-circuit applications," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 42, 17-28, 2021, (https://creativecommons.org/licenses/by/4.0/).        Google Scholar

92. Loghmannia, P., M. Kamyab, M. R. Nikkah, and R. Rezaiesarlak, "Miniaturized low-cost phased-array antennausing SIW slot elements," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1434-1437, 2012.        Google Scholar

93. Celenk, E. and N. T. Tokan, "Frequency scanning conformal sensor based on SIW metamaterial antenna," IEEE Sensors Journal, Vol. 21, 16015-16023, 2021.        Google Scholar

94. Nitas, M., V. Salonikios, S. Raptis, and T. V. Yioultsis, "Design of fully planar cost-effective metamaterial-enhanced SIW antennas for 5G applications," 16th European International Conference on Antennas and Propagation, 2022.        Google Scholar

95. Nitas, M., M. T. Passia, and T. V. Yioultsis, "Fully planar slow-wave substrate integrated waveguide based on broadside-coupled complementary split ring resonators for mmwave and 5G components," IET Microwaves, Antennas & Propagation, Vol. 14, 1096-1107, 2020.        Google Scholar

96. Dong, Y., V. Zhurbenko, K. Kaslis, J. M. Bjorstorp, and T. M. Johansen, "Wideband split-ring antenna arrays based on substrate integrated waveguide for Ka-band applications," International Journal of Microwave and Wireless Technologies, Vol. 14, 524-536, 2022.        Google Scholar

97. Hu, B., T. Wu, Y. Cai, W. Zhang, and B. L. Zhang, "A novel metamaterial-based planar integrated Luneburg lens antenna with wide bandwidth and high gain," IEEE Access, Vol. 08, 4708-4713, 2020.        Google Scholar

98. Feng, C., T. Shi, and L. Wang, "Novel broadband Bow-Tie antenna based on complementary split- ring resonators enhanced substrate-integrated waveguide," IEEE Access, Vol. 07, 12397-12404, 2019.        Google Scholar

99. Jin, C. and A. Alphones, "Leaky-wave radiation behavior from a double periodic composite right/left-handed substrate integrated waveguide," IEEE Transactions on Antennas and Propagation, Vol. 60, 1727-1735, 2012.        Google Scholar