Vol. 105
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-07-27
A Standard Ray Tracing Technique for Predicting Signal Strength of Wireless Sensor Network in Smart Building
By
Progress In Electromagnetics Research Letters, Vol. 105, 79-84, 2022
Abstract
In this paper, a standard ray tracing model based on Geometrical Optics (GO) is proposed for predicting the signal strength of Wireless Sensor Network (WSN), ZigBee nodes, in an indoor environment. The signal strength is calculated analytically. The results are compared with numerical analysis implemented in FEKO computational electromagnetic software, and agreement is demonstrated. Also, the model is verified by a simple measurement campaign in a straight corridor section of commercial building, and results agreement is obtained. The results show that the proposed technique is capable of predicting the signal strength of WSN sensors in a corridor section of indoor environment with good accuracy, fast calculation time, and low computational resources and complexity. The proposed analytical model and measurement dataset can help WSN designers select the best locations of ZigBee nodes in a straight corridor section with good signal quality.
Citation
Hany M. El-Maghrabi, "A Standard Ray Tracing Technique for Predicting Signal Strength of Wireless Sensor Network in Smart Building," Progress In Electromagnetics Research Letters, Vol. 105, 79-84, 2022.
doi:10.2528/PIERL22052504
References

1. Sasipriya, S., R. Gurupriya, B. Ilakkiya, and J. S. Kaavya, "IOT enabled smart home and health monitoring system," 6th International Conference on Communication and Electronics Systems (ICCES), 573-576, Jul. 2021.

2. Samijayani, O. N. and A. M. Muthiah, "Wireless sensor network performance evaluation on building with ZigBee transmission," International Conference on Smart Computing and Electronic Enterprise (ICSCEE), 1-6, Jul. 2018.

3. Lan, L. and Y. K. Tan, "Advanced building energy monitoring using wireless sensor integrated energy plus platform for personal climate control," IEEE International Conference on Power Electronics and Drive Systems, 567-574, Aug. 2015.

4. Ciuonzo, D., P. S. Rossi, and P. Willett, "Generalized rao test for decentralized detection of an uncooperative target," IEEE Signal Processing Letters, Vol. 24, No. 5, 678-682, May 2017.
doi:10.1109/LSP.2017.2686377

5. Niu, R. and P. K. Varshney, "Performance analysis of distributed detection in a random sensor field," IEEE Transactions on Signal Processing, Vol. 56, No. 1, 339-349, Jan. 2008.
doi:10.1109/TSP.2007.906770

6. Ciuonzo, D., P. S. Rossi, and P. K. Varshney, "Distributed detection in wireless sensor networks under multiplicative fading via generalized score tests," IEEE Internet of Things Journal, Vol. 8, No. 11, 9059-9071, Jun. 1, 2021.
doi:10.1109/JIOT.2021.3056325

7. Danbatta, S. J. and A. Varol, "Comparison of Zigbee, Z-wave, Wi-Fi, and bluetooth wireless technologies used in home automation," 2019 7th International Symposium on Digital Forensics and Security (ISDFS), 1-5, 2019.

8. Lee, J., Y. Su, and C. Shen, "A comparative study of wireless protocols: bluetooth, UWB, ZigBee, and Wi-Fi," IECON 2007 --- 33rd Annual Conference of the IEEE Industrial Electronics Society, 46-51, 2007.
doi:10.1109/IECON.2007.4460126

9. Kuzminykh, I., A. Snihurov, and A. Carlsson, "Testing of communication range in ZigBee technology," IEEE International Conference on the Experience of Designing and Application of CAD Systems (CADSM), 133-136, Feb. 2017.

10. Jawad, H. M., et al. "Accurate empirical path-loss model based on particle swarm optimization for wireless sensor networks in smart agriculture," IEEE Sensors Journal, Vol. 20, No. 1, 552-561, Sep. 2020.
doi:10.1109/JSEN.2019.2940186

11. Amorim, R., P. Mogensen, T. Sorensen, I. Z. Kovács, and J. Wigard, "Pathloss measurements and modeling for UAVs connected to cellular networks," IEEE Vehicular Technology Conference (VTC Spring), 1-6, 2017.

12. Ning, G., S. Ma, Y. Guo, and Q. Wang, "Prediction of indoor wireless LAN field strength distribution based on ray tracing method," 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), 656-6563, Oct. 2019.

13. Kumar, P. and G. Ranganath, "Geometrical theory of diffraction," Pramana --- J. Phys., Vol. 37, 457-488, 1991.
doi:10.1007/BF02846778

14. Akl, R., D. Tummala, and X. Li, "Indoor propagation modeling at 2.4 GHz for IEEE 802.11 Networks," The Six International Muti-Conference on Wireless and Optical Communication, Jul. 2006.

15. The MathWorks Inc. "MATLAB,", http://www.mathworks.com.

16. FEKO Suite "Altair Engineering,", 2021.

17. Gharghan, S. K., R. Nordin, M. Ismail, and J. A. Ali, "Accurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cycling," IEEE Sensors Journal, Vol. 16, 529-541, Jan. 2016.
doi:10.1109/JSEN.2015.2483745

18. Digi International, https://www.digi.com/xbee.