Vol. 106
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-08-26
A Dual-Polarized, Direction Diagram Reconfigurable, Liquid Metal Antenna
By
Progress In Electromagnetics Research Letters, Vol. 106, 57-66, 2022
Abstract
In this paper, we present a dual-polarized, pattern reconfigurable, liquid metal dipole antenna. The proposed design consists of a pair of ±45° polarized reconfigurable dipole antennas, two vertically placed feeding structures with filtering branches, and a resin frame for injecting liquid metal to adjust pattern. By introducing the U-shaped structure, a better impedance matching performance is achieved in two bands. The polarization can be switched by injecting liquid metal into different dipole microfluidic channels. By controlling the liquid metal reflector around the magnetic dipole, the reconfigurable pattern of +45° polarized antenna can be realized at 0°, 180° and 90° on the plane of phi=90°, and the reconfigurable pattern of -45° magnetic dipole antenna can be achieved at 0°, 90° and 270° on the plane of phi= 0°. The basic antenna operates with linear polarization around 4.8 GHz. The VSWR is less than 1.5. In the radiation pattern of the antenna, the port isolations of the two crossing ports are S12 and S21. S21 port isolation is more than 35 dB. The antenna has good pattern reconfigurable characteristics, and the simulation results of the antenna indicate good radiation directivity. Moreover, the height of the proposed antenna is 0.625λ at 4.8 GHz. The good performance of the antenna makes it a candidate for base station systems below 5G sub-6 GHz.
Citation
Xia Bai, Shan Lv, and Yanju Zhu, "A Dual-Polarized, Direction Diagram Reconfigurable, Liquid Metal Antenna," Progress In Electromagnetics Research Letters, Vol. 106, 57-66, 2022.
doi:10.2528/PIERL22061502
References

1. Zhang, M., "Research on flexible and reconfigurable liquid metal antenna,", Beijing University of Ports and Telecommunications, Beijing, 2021.
doi:10.1109/TAP.2020.2993310

2. Yang, X., Y. Liu, H. Lei, Y. Jia, and Z. Zhou, "A radiation pattern reconfigurable Fabry Pérot antenna based on liquid metal," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7658-7663, 2020.

3. Mubasher, F., S. Wang, X. Chen, and Z. Ying, "Study of reconfigurable antennas for MIMO systems,", IEEE, 2010.
doi:10.1109/TAP.2004.834372

4. Zhang, S., G. H. Huff, J. Feng, and J. T. Bernhard, "A pattern reconfigurable microstrip parasitic array," IEEE Antennas & Propagation, Vol. 52, No. 10, 2773-2776, 2004.

5. Deo, P., A. Mehta, D. Mirshekar-Syahkal, and H. Nakano, "An HIS-based spiral antenna for pattern reconfigurable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 196-199, 2008.

6. Duan, R. Z., "Research on reconstructed antenna technology based on beam switching,", Beijing University of Ports and Telecommunications, Beijing, 2019.
doi:10.1109/LAWP.2019.2913170

7. Nie, Z., H. Zhai, and L. Liu, "A dual-polarized frequency-reconfigurable low-profile antenna with harmonic suppression for 5G application," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1228-1232, 2019.
doi:10.1016/S1005-8885(11)60256-2

8. Cai, X. T., A. G. Wang, and M. A. Ning, "Novel radiation pattern reconfigurable antenna with six beam choices," The Journal of China Universities of Posts and Telecommunications, Vol. 19, No. 2, 2012.
doi:10.1007/s10854-021-07634-3

9. Geetha, M., K. Dhanalakshmi, and V. Vetriselvi, "A shape memory alloy bimorph-actuated switch for antenna reconfiguration," Journal of Materials Science: Materials in Electronics, Vol. 33, No. 7, 4426-4437, 2022.
doi:10.1007/s11276-022-02946-6

10. Kumar, R. V., M. Vanitha, R. Thandaiah Prabu, and M. Bindhu, "Multiband miniaturisefrequency reconfigurable patch antenna using PIN diodes," Wireless Networks, Vol. 28, No. 6, 2485-2497, 2022.

11. Patela, S. K., S. P.Lavadiya, J. Parmar, K. Ahmed, S. A. Taya, and S. Das, "Low-cost, multiband, high gain and reconfigurable microstrip radiating structure using PIN diode for 5G/Wi- MAX/WLAN applications," Physics of Condensed Matter Physics B, Vol. 639, 413972, ELSEVIER, 2022.

12. Nguyen, T. K., S. K. Patel, S. Lavadiya, J. Parmar, and C. D. Bui, "Design and fabrication of multiband reconfigurable copper and liquid multiple complementary split-ring resonator based patch antenna," Waves in Random and Complex Media, 2022.
doi:10.1109/LMWC.2003.808714

13. Huff, H. G., J. Feng, S. Zhang, and J. T. Bernhard, "A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna," Microwave and Wireless Components Letters, Vol. 13, No. 2, 57-59, IEEE, 2003.
doi:10.1109/TAP.2017.2757962

14. Hossain, M. A., I. Bahceci, and B. A. Cetiner, "Parasitic layer based radiation pattern reconfigurable antenna for 5G communications," IEEE Transactions on Antennas & Propagation, Vol. 65, No. 12, 6444-6452, 2017.
doi:10.1109/LAWP.2010.2049332

15. Nair, S. and M. J. Ammann, "Reconfigurable antenna with elevation and azimuth beam switching," IEEE Antennas & Wireless Propagation Letters, Vol. 9, 367-370, 2010.

16. Yu, Z. and J. H. Liu, "Wideband and low-profile omnidirectional circularly polarized antenna with slits and shorting vias," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 686-689, 2015.

17. Massoud, A. T. and J. T. Bernhard, "A dualband dual-polarized steerable pattern reconfigurable antenna," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, 2015.