Vol. 106
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-08-25
A Compact Patch Antenna with a Fractal Structure for BeiDou (Compass) Navigation System
By
Progress In Electromagnetics Research Letters, Vol. 106, 41-47, 2022
Abstract
A circularly polarized (CP) patch antenna with a fractal structure that can be applied to the BeiDou navigation satellite system (BDS) is proposed. Etching two incomplete rings of different sizes with the antenna center as the center on the radiation patch generates CP. By adding a periodic structure based on the Sierpinski Carpet fractal around it, the size can be reduced while the gain is further improved. The dimension of the antenna is 0.35λo × 0.35λo × 0.03λo. Measured results manifest that the impedance bandwidth (S11 < -10 dB) is wider than 40 MHz at 1.561 GHz; the gain in 3-dB axial ratio (AR) bandwidth can reach 3.33 dBi; the beamwidth exceeds 140° in the 3-dB AR bandwidth.
Citation
Hu Chang, Mengxin Liu, Daming Lin, and Jie Wang, "A Compact Patch Antenna with a Fractal Structure for BeiDou (Compass) Navigation System," Progress In Electromagnetics Research Letters, Vol. 106, 41-47, 2022.
doi:10.2528/PIERL22062002
References

1. Xiao, B., H. Wong, M. Li, B. Wang, and K. L. Yeung, "Dipole antenna with both odd and even modes excited and tuned," IEEE Trans. Antennas Propag., Vol. 70, No. 3, 1643-1652, 2022.
doi:10.1109/TAP.2021.3111231

2. Musthafa, A. M., M. Khalily, A. Araghi, O. Yurduseven, and R. Tafazolli, "Compact multimode quadrifilar helical antenna for GNSS-R applications," IEEE Antennas and Wireless Propag. Lett., Vol. 21, No. 4, 755-759, 2022.
doi:10.1109/LAWP.2022.3144968

3. Zhang, H., Y. Guo, and G. Wang, "A wideband circularly polarized crossed-slot antenna with stable phase center," IEEE Antennas and Wireless Propag. Lett., Vol. 18, No. 5, 941-945, 2019.
doi:10.1109/LAWP.2019.2906363

4. Sun, C., Z. Wu, and B. Bai, "A novel compact wideband patch antenna for GNSS application," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7334-7339, 2017.
doi:10.1109/TAP.2017.2761987

5. Choudhary, S. D., A. Srivastava, and M. Kumar, "Design of single-fed dual-polarized dual-band slotted patch antenna for GPS and SDARS applications," Microw. Opt. Technol. Lett.1, 1-8, 2020.

6. Guo, L., P. Zhang, F. Zeng, Z. Zhang, and C. Zhang, "A novel four-arm planar spiral antenna for GNSS application," IEEE Access, Vol. 9, 168899-168906, 2021.
doi:10.1109/ACCESS.2021.3133663

7. Gupta, S., P. Kshirsagar, and B. Mukherjee, "Sierpinski fractal inspired inverted pyramidal DRA for wide band applications," Electromagnetics, Vol. 38, No. 2, 103-112, 2018.
doi:10.1080/02726343.2018.1436738

8. Kuzu, S. and N. Akcam, "Array antenna using defected ground structure shaped with fractal form generated by apollonius circle," IEEE Antennas Wireless Propag. Lett.,, Vol. 16, 1020-1023, 2017.
doi:10.1109/LAWP.2016.2616944

9. Sun, C., H. Zheng, L. Zhang, et al. "A compact frequency-reconfigurable patch antenna for Beidou (COMPASS) navigation system," IEEE Antennas Wireless Propag. Lett., Vol. 13, 967-970, 2014.

10. Liu, Z., S. Fang, S. Zhu, et al. "BeiDou navigation terminal multi-mode asymmetric slots circularly polarized microstrip antenna," Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation, 382-385, Harbin, China, Jul. 26-29, 2014.

11. Zheng, K. and Q. Chu, "A novel annular slotted center-fed BeiDou antenna with a stable phase center," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 3, 364-367, 2018.
doi:10.1109/LAWP.2017.2778222

12. Zheng, K. and Q. Chu, "A small symmetric-slit-shaped and annular slotted BeiDou antenna with stable phase center," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 1, 146-149, 2018.
doi:10.1109/LAWP.2017.2778219

13. Nasimuddin, X. Qing, and Z. N. Chen, "A compact circularly polarized slotted patch antenna for GNSS applications," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6506-6509, 2014.
doi:10.1109/TAP.2014.2360218

14. Wang, L., X.-X. Yang, T. Lou, and S. Gao, "A miniaturized differentially fed patch antenna based on capacitive slots," IEEE Antennas Wireless Propag. Lett., Vol. 21, No. 7, 1472-1476, 2022.
doi:10.1109/LAWP.2022.3171841