1. Linsay, P. S., "Period doubling and chaotic behavior in a driven an harmonic oscillator," Phys. Rev. Lett., Vol. 47, No. 19, 1349-1352, 1981.
doi:10.1103/PhysRevLett.47.1349 Google Scholar
2. Singh, J. P. and B. K. Roy, "Simplest hyperchaotic system with only one piecewise linear term," Electronics Letters, Vol. 55, No. 7, 378-380, Apr. 2019.
doi:10.1049/el.2018.8078 Google Scholar
3. Lai, Q., P. D. K. Kuate, F. Liu, and H. H. Iu, "An extremely simple chaotic system with infifinitely many coexisting attractors," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 67, No. 6, 1129-1133, Jun. 2020.
doi:10.1109/TCSII.2019.2927371 Google Scholar
4. Carroll, T. L. and L. M. Pecora, "Parameter ranges for onset of period doubling in the diode resonator," Phys. Rev. E, Vol. 66, 046219-1-046219-8, 2002. Google Scholar
5. Tanaka, S., S. Higuchi, and T. Matsumoto, "Sheet structure in global bifurcations of a driven R-L-diode circuit," Phys. Rev. E, Vol. 54, 6014-6028, 1996.
doi:10.1103/PhysRevE.54.6014 Google Scholar
6. De Moraes, R. M. and S. M. Anlage, "Effects of UHF stimulus and negative feedback on nonlinear circuits," IEEE Trans. Circuits Syst. I, Fundamental Theory and Applications, Vol. 51, No. 4, 748-754(7), Apr. 2004.
doi:10.1109/TCSI.2004.826214 Google Scholar
7. Lu, L. and Z. W. Du, "Chaos in a simple microwave circuit with a PIN diode," Antennas Propagation and EM Theory (ISAPE), 963-965, 2010. Google Scholar
8. Xu, F. and P. Tan, "Analysis of Period-doubling Bifurcation and Chaos using physics-based SiC diode model," 2015 18th International Conference on Electrical Machines and Systems (ICEMS), 612-615, Oct. 25-28, 2015. Google Scholar
9. Basu, S., S. A. Maas, and T. Itoh, "Quasi-periodic route to chaos in a microwave doubler," IEEE Microwave Guided Wave Lett., Vol. 5, No. 7, 224-6, Jul. 1995.
doi:10.1109/75.392282 Google Scholar
10. Rollins, R. W. and E. R. Hunt, "Exactly solvable model of a physical system exhibiting universal chaotic behavior," Phys. Rev. Lett., Vol. 49, 1295, 1982.
doi:10.1103/PhysRevLett.49.1295 Google Scholar
11. De Moraes, R. M. and S. M. Anlage, "Unified model and reverse recovery nonlinearities of the driven diode resonator," Phys. Rev. E, Vol. 68, 026201-1-026201-9, 2003. Google Scholar
12. Kim, C. M., C. H. Cho, C. S. Lee, J. H. Yim, J. Kim, and Y. Kim, "Period doubling and bifurcation in an electronic circuit with a fast-recovery diode and square-wave input," Phys. Rev. A, Vol. 38, 1645-1648, 1988.
doi:10.1103/PhysRevA.38.1645 Google Scholar
13. Corti, L., L. De Menna, G. Miano, and L. Verolino, "Chaotic dynamics in an infinite-dimensional electromagnetic system," IEEE Trans. Circuits Syst. I, Fundamental Theory and Applications, Vol. 41, No. 11, 730-736, 1994.
doi:10.1109/81.331524 Google Scholar
14. Blakely, J. N. and N. J. Corron, "Experimental observation of delay-induced radio frequency chaos in a transmission line oscillator," Chaos, Vol. 14, No. 4, 1035-41, Dec. 2004.
doi:10.1063/1.1804092 Google Scholar
15. Demergis, V., A. Glasser, M. Miller, T. M. A. Jr, E. Ott, and S. M. Anlage, "Delayed feed-back and chaos on the driven diode-terminated transmission line,", arXiv:nlin/0605037, May 2006. Google Scholar
16. Sharkovsky, A. N., Y. Maistrenko, P. Deregel, and L. O. Chua, "Dry turbulence from a time delayed Chua's circuit," J. Circuits, Syst. and Comput., Vol. 3, No. 2, 645-668, 1993.
doi:10.1142/S021812669300040X Google Scholar
17. Miano, G. and A. Maffucci, Transmission Lines and Lumped Circuits, Academic Press, 2001.
18. Kawata, J., Y. Nishio, and A. Ushida, "Analysis of Chua's circuit with transmission line," IEEE Trans. Circuits Syst. I, Fundamental Theory and Applications, Vol. 44, No. 6, 556-558, 1997.
doi:10.1109/81.586030 Google Scholar