Vol. 113
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-23
Millimeter Wave Image Super Resolution Using Multichannel Depth Convolution Neural Network
By
Progress In Electromagnetics Research M, Vol. 113, 225-235, 2022
Abstract
Benefit from the high resolution, penetrating and all weather advantages of millimeter-wave (MMW) imaging, MMW imaging plays an important role in remote sensing, security inspection, navigation, etc. Among the MMW imaging systems, synthetic aperture imaging radiometer (SAIR) utilizes aperture synthetic technology to achieve higher imaging resolution, but the perception information is insufficient, resulting in poor image quality. In order to improve the image quality of passive SAIR MMW image effectively, we propose a novel multichannel depth convolutional neural network (MDCNN) in this paper. Aiming at the characteristics of original MMW images with more noise in low-frequency information and less features in high-frequency information, wavelet transform is incorporated into the MDCNN to obtain the high and low frequency components firstly. Then, dense residual block and skip connection technology are adopted to denoise and enhance target information in the four independent channels respectively. Finally, high quality MMW images are synthesized by inverse wavelet transform. The simulation results show that the reconstructed images of MDCNN have better image quality (such as image contour and texture details) than other deep learning-based methods.
Citation
Ruyue Peng Jianfei Chen Zhao Liu Zhimin Guo , "Millimeter Wave Image Super Resolution Using Multichannel Depth Convolution Neural Network," Progress In Electromagnetics Research M, Vol. 113, 225-235, 2022.
doi:10.2528/PIERM22070801
http://www.jpier.org/PIERM/pier.php?paper=22070801
References

1. Clark, S. E., J. A. Lovberg, C. A. Martin, and V. G. Kolinko, "Passive millimeter-wave imaging for airborne and security applications," Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, 16-21, International Society for Optics and Photonics, 2003.

2. Camps, A., J. Bará, I. C. Sanahuja, and F. Torres, "The processing of hexagonally sampled signals with standard rectangular techniques: Application to 2-d large aperture synthesis interferometric radiometers," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 1, 183-190, 1997.
doi:10.1109/36.551946

3. Duffo, N., I. Corbella, F. Torres, A. Camps, and M. Vall-llossera, "Advantages and drawbacks of near field characterization of large aperture synthesis radiometers," 8th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications, 24-27, University La Sapienza, Rome, 2004.

4. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field,", Vol. 141, 517-535, 2013.

5. Van Ouwerkerk, J., "Image super-resolution survey," Image and Vision Computing, Vol. 24, No. 10, 1039-1052, 2006.
doi:10.1016/j.imavis.2006.02.026

6. Zhou, F., W. Yang, and Q. Liao, "Interpolation-based image super-resolution using multisurface fitting," IEEE Transactions on Image Processing, Vol. 21, No. 7, 3312-3318, 2012.
doi:10.1109/TIP.2012.2189576

7. Dong, C., C. C. Loy, K. He, and X. Tang, "Learning a deep convolutional network for image super-resolution," European Conference on Computer Vision, 184-199, Springer, 2014.

8. Dong, C., C. C. Loy, and X. Tang, "Accelerating the super-resolution convolutional neural network," European Conference on Computer Vision, 391-407, Springer, 2016.

9. Kim, J., J. K. Lee, and K. M. Lee, "Accurate image super-resolution using very deep convolutional networks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1646-1654, 2016.

10. Lim, B., S. Son, H. Kim, S. Nah, and K. Mu Lee, "Enhanced deep residual networks for single image super-resolution," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 136-144, 2017.

11. Zhang, Y., Y. Tian, Y. Kong, B. Zhong, and Y. Fu, "Residual dense network for image super-resolution,", IEEE, 2018.

12. Long, Z., T. Wang, C. You, Z. Yang, K. Wang, and J. Liu, "Terahertz image super-resolution based on a deep convolutional neural network," Applied Optics, Vol. 58, No. 10, 2731-2735, 2019.
doi:10.1364/AO.58.002731

13. Chen, J., S. Zhang, and X. Zhu, "Higher-order moving target detection for rotating scanning synthetic aperture interferometric radiometer," Progress In Electromagnetics Research Letters, Vol. 82, 41-49, 2019.

14. Woo, S., J. Park, J.-Y. Lee, and I. S. Kweon, "CBAM: Convolutional block attention module," Proceedings of the European Conference on Computer Vision (ECCV), 3-19, 2018.

15. Shin, D. K. and Y. S. Moon, "Super-resolution image reconstruction using wavelet based patch and discrete wavelet transform," Journal of Signal Processing Systems, Vol. 81, No. 1, 71-81, 2015.
doi:10.1007/s11265-014-0903-2

16. Tanner, A., B. Lambrigsten, T. Gaier, and F. Torres, "Near field characterization of the geostar demonstrator," 2006 IEEE International Symposium on Geoscience and Remote Sensing, 2529-2532, IEEE, 2006.
doi:10.1109/IGARSS.2006.654

17. Lannes, A., É. Anterrieu, and K. Bouyoucef, "Fourier interpolation and reconstruction via shannon-type techniques: I. Regularization principle," Journal of Modern Optics, Vol. 41, No. 8, 1537-1574, 1994.
doi:10.1080/09500349414552411

18. Lannes, A., É. Anterrieu, and K. Bouyoucef, "Fourier interpolation and reconstruction via shannon-type techniques II. Technical developments and applications," Journal of Modern Optics, Vol. 43, No. 1, 105-138, 1996.
doi:10.1080/09500349608232728

19. Lewis, B. and F. Sgallari, "Tikhonov regularization with nonnegativity constraint," Electronic Transactions on Numerical Analysis, Vol. 18, 153-173, 2004.