Vol. 107
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-11-14
A Simple Balanced Bandpass Filter Using Loop-Type Microstrip Resonator Loaded with Shorted/Opened Stubs
By
Progress In Electromagnetics Research Letters, Vol. 107, 141-149, 2022
Abstract
A simple balanced bandpass filter is presented. It is constructed mainly by a loop-type resonator with loaded shorted/opened stubs. The resonator is fed by the balanced coupled-line structure. In the loop-type resonator, three approaches can be simultaneously utilized to achieve high common-mode suppression. One is that the loop-type resonator has different differential/common-mode resonant frequencies, which results in a good in-band common-mode suppression. The second is that the loaded short stubs with different lengths will make the input/output port couplings to have different coupling strengths, which will deteriorate the common-mode bandpass response. The third is that loading the grounded resistors can effectively dissipate the common-mode signal. Meanwhile, loading the grounded resistors in the balanced coupled-line structure can effectively dissipate the reflective common-mode signal. A detailed description about its structure, operational mechanism and design method is given. For demonstration, a prototype balanced bandpass filter working at 2.4 GHz is designed, fabricated and measured. A high in-band common-mode suppression of 49 dB is achieved. The measured and simulated results can verify the effectiveness of the proposed balanced bandpass filter and the design method.
Citation
Jun-Mei Yan, Zhi-Peng Xiao, and Liangzu Cao, "A Simple Balanced Bandpass Filter Using Loop-Type Microstrip Resonator Loaded with Shorted/Opened Stubs," Progress In Electromagnetics Research Letters, Vol. 107, 141-149, 2022.
doi:10.2528/PIERL22080204
References

1. Ouyang, Z. A., L. Zhu, and L. L. Qiu, "Wideband balanced filters with intrinsic common-mode suppression using coplanar strip double-sided shunt-stub structures," IEEE Trans. Microw. Theory Techn., Vol. 69, No. 8, 3770-3782, 2021.
doi:10.1109/TMTT.2021.3077268        Google Scholar

2. Zhang, S., L. Qiu, and Q. Chu, "Multiband balanced filters with controllable bandwidths based on slotline coupling feed," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 11, 974-976, 2017.
doi:10.1109/LMWC.2017.2750026        Google Scholar

3. Wei, F., P. Y. Qin, Y. J. Guo, C. Ding, X. W. Shi, and , "Compact balanced dual- and tri-band BPFs based on coupled complementary split-ring resonators (C-CSRR)," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 2, 107-109, 2016.
doi:10.1109/LMWC.2016.2517125        Google Scholar

4. Deng, H. W., L. Sun, Y. F. Xue, F. Liu, and T. Xu, "High selectivity and common-mode suppression balanced bandpass filter with TM dual-mode SIW cavity," IET Microwaves, Antennas & Propagation, Vol. 13, No. 12, 2129-2133, 2019.
doi:10.1049/iet-map.2018.6079        Google Scholar

5. Zhu, J.-M., H.-W. Deng, Y.-K. Han, S.-B. Xing, and W. Han, "Compact triple-mode HMSIW balanced passband filter with intrinsic common-mode suppression," Microwave and Optical Technology Letters, Vol. 63, No. 7, 1803-1806, 2021.
doi:10.1002/mop.32827        Google Scholar

6. Deng, H. W., Y. K. Han, L. Sun, J. M. Zhu, and S. B. Xing, "Multilayer dual-mode balanced SIW filter utilizing PECCPMC characteristic for common-mode suppression," IEEE Microw. Wireless Compon. Lett., Vol. 30, No. 9, 865-868, 2020.
doi:10.1109/LMWC.2020.3008933        Google Scholar

7. Jin, C., J. X. Chen, H. Chu, Z. H. Bao, and , "X-band differential bandpass filter with high common- mode suppression using substrate integrated waveguide cavity," Electronics Letters, Vol. 50, No. 2, 88-89, 2014.
doi:10.1049/el.2013.2985        Google Scholar

8. Li, P., H. Chu, D. Zhao, and R. S. Chen, "Compact dual-band balanced SIW bandpass filter with improved common-mode suppression," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 4, 347-349, 2017.
doi:10.1109/LMWC.2017.2678428        Google Scholar

9. Fernandez-Prieto, A., A. Lujambio, J. Martel, F. Medina, F. Mesa, and R. R. Boix, "Simple and compact balanced bandpass filters based on magnetically coupled resonators," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 6, 1843-1853, 2015.
doi:10.1109/TMTT.2015.2424229        Google Scholar

10. Deng, H. W., T. Zhang, F. Liu, and T. Xu, "High selectivity and CM suppression frequency-dependent coupling balanced BPF," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 5, 413-415, 2018.
doi:10.1109/LMWC.2018.2811340        Google Scholar

11. Chen, J., M. Du, Y. Li, Y. Yang, and J. Shi, "Independently tunable/controllable differential dual-band bandpass filters using element-loaded stepped-impedance resonators," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 8, No. 1, 113-120, 2018.
doi:10.1109/TCPMT.2017.2761789        Google Scholar

12. Lee, C. H., C. I. Hsu, H. H. Chen, and Y.-S. Lin, "Balanced single- and dual-band BPFs using ring resonators," Progress In Electromagnetics Research, Vol. 116, 333-346, 2011.
doi:10.2528/PIER11033016        Google Scholar

13. Liu, Q., J. Wang, G. Zhang, L. Zhu, and W. Wu, "A new design approach for balanced bandpass lters on right-angled isosceles triangular patch resonator," IEEE Microw. Wireless Compon. Lett., Vol. 29, No. 1, 5-7, 2019.
doi:10.1109/LMWC.2018.2884829        Google Scholar

14. Yan, T., D. Lu, J. Wang, and X. Tang, "High-selectivity balanced bandpass filter with mixed electric and magnetic coupling," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 6, 398-400, 2016.
doi:10.1109/LMWC.2016.2562110        Google Scholar

15. Yang, L., W. W. Choi, K. W. Tam, and L. Zhu, "Balanced dual-band bandpass filter with multiple transmission zeros using doubly short-ended resonator coupled line," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 7, 2225-2232, 2015.
doi:10.1109/TMTT.2015.2431679        Google Scholar

16. Hong, J. S. and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, John Wiley & Sons, 2001.
doi:10.1002/0471221619

17. Wang, H. and Q. X. Chu, "A narrow-band hairpin-comb two-pole filter with source-load coupling," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 7, 372-374, 2010.
doi:10.1109/LMWC.2010.2049426        Google Scholar

18. Bockelman, D. E. and W. R. Eisenstadt, "Combined differential and common-mode scattering parameters: Theory and simulation," IEEE Trans. Microw. Theory Techn., Vol. 43, No. 7, 1530-1539, 1995.
doi:10.1109/22.392911        Google Scholar