Vol. 108
Latest Volume
All Volumes
PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-01-06
Beam Scanning 10×10 Phased Array Antenna Using Liquid Crystal Phase Shifters
By
Progress In Electromagnetics Research Letters, Vol. 108, 93-102, 2023
Abstract
In this paper, we devise a phased array antenna with liquid crystal material, employing a 10×10 uniform rectangular array. The phase of the phased array antenna is controlled by loading bias voltage on the liquid crystal layer, and the FoM (figure-of-merit) of the phase shifter can attain 70.6°/dB. The phased array antenna works at 16 GHz and employs a microstrip circular patch as the radiation unit. The proposed phased array can achieve a gain of 23.1 dBi, and its beam scanning range reaches ±45° in simulation experiment. The preliminary measurement results demonstrate that the performance of the proposed antenna is basically consistent with simulation results.
Citation
Wei Hu Di Jiang Weiyi Yang Pengbo Pan Tianming Bai Weiyi Zhang Zhiyong Guo Guofu Wang , "Beam Scanning 10×10 Phased Array Antenna Using Liquid Crystal Phase Shifters," Progress In Electromagnetics Research Letters, Vol. 108, 93-102, 2023.
doi:10.2528/PIERL22081706
http://www.jpier.org/PIERL/pier.php?paper=22081706
References

1. Duncombe, J. U., "Infrared navigation --- Part I: An assessment of feasibility," IEEE Trans. Electron Devices, Vol. 11, No. 1, 34-39, Jan. 1959.

2. Yang, X., Y. Liu, H. Lei, Y. Jia, P. Zhu, and Z. Zhou, "A radiation pattern reconfigurable Fabry-Pérot antenna based on liquid metal," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7658-7663, Nov. 2020.
doi:10.1109/TAP.2020.2993310

3. Chen, Z., H.-Z. Li, H. Wong, X. Zhang, and T. Yuan, "A circularly-polarized-reconfigurable patch antenna with liquid dielectric," IEEE Open Journal of Antennas and Propagation, Vol. 2, 396-401, 2021.
doi:10.1109/OJAP.2021.3064996

4. Ibrahim, M. I., M. G. Ahmed, M. El-Nozahi, A. M. E. Safwat, and H. El-Hennawy, "Design and performance analysis of a miniature, dual-frequency, millimeter wave linear phased array antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7029-7037, Dec. 2017.
doi:10.1109/TAP.2017.2765542

5. Moon, S., S. Yun, I. Yom, and H. L. Lee, "Phased array shaped-beam satellite antenna with boosted-beam control," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7633-7636, Dec. 2019.
doi:10.1109/TAP.2019.2930129

6. Syrytsin, I., S. Zhang, G. F. Pedersen, and A. S. Morris, "Compact quad-mode planar phased array with wideband for 5G mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4648-4657, Sept. 2018.
doi:10.1109/TAP.2018.2842303

7. Al-Saedi, H., et al., "A low-cost Ka-band circularly polarized passive phased-array antenna for mobile satellite applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 221-231, Jan. 2019.
doi:10.1109/TAP.2018.2878335

8. Koh, K. and G. M. Rebeiz, "0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays," IEEE Journal of Solid-State Circuits, Vol. 42, No. 11, 2535-2546, Nov. 2007.
doi:10.1109/JSSC.2007.907225

9. Jeon, H. and K. W. Kobayashi, "A high linearity +44.5-dBm IP3 C-band 6-bit digital phase shifter using SOI technology for phased array applications," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 11, 733-736, Nov. 2019.
doi:10.1109/LMWC.2019.2940440

10. Tsai, J.-H., Y.-L. Tung, and Y.-H. Lin, "A 27-42-GHz low phase error 5-bit passive phase shifter in 65-nm CMOS technology," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 9, 900-903, Sept. 2020.
doi:10.1109/LMWC.2020.3012459

11. Nikfalazar, M., et al., "Beam steering phased array antenna with fully printed phase shifters based on low-temperature sintered BST-composite thick films," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 1, 70-72, Jan. 2016.
doi:10.1109/LMWC.2015.2505633

12. Chen, C. Y., C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, "Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter," Opt. Exp., Vol. 12, No. 12, 2630-2635, Jun. 2004.
doi:10.1364/OPEX.12.002625

13. Woehrle, C. D., D. T. Doyle, S. A. Lane, and C. G. Christodoulou, "Space radiation environment testing of liquid crystal phase shifter devices," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1923-1926, 2016.
doi:10.1109/LAWP.2015.2511058

14. Polat, E., et al., "Tunable liquid crystal filter in nonradiative dielectric waveguide technology at 60 GHz," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 1, 44-46, Jan. 2019.
doi:10.1109/LMWC.2018.2884152

15. Perez-Palomino, G., et al., "Design and demonstration of an electronically scanned reflectarray antenna at 100 GHz using multiresonant cells based on liquid crystals," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3722-3727, Aug. 2015.
doi:10.1109/TAP.2015.2434421

16. Karabey, O. H., A. Gaebler, S. Strunck, and R. Jakoby, "A 2-D electronically steered phased-array antenna with 2 × 2 elements in LC display technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 5, 1297-1306, May 2012.
doi:10.1109/TMTT.2012.2187919

17. Wang, D., E. Polat, H. Tesmer, R. Jakoby, and H. Maune, "A compact and fast 1 × 4 continuously steerable endfire phased-array antenna based on liquid crystal," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 10, 1859-1862, Oct. 2021, doi: 10.1109/LAWP.2021.3096035.
doi:10.1109/LAWP.2021.3096035

18. Kraus, J. D. and R. J. Marhefka, Antennas: For All Applications, 3rd Ed., 2006.

19. Nikfalazar, M., et al., "Two-dimensional beam-steering phased-array antenna with compact tunable phase shifter based on BST thick films," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 585-588, 2017.
doi:10.1109/LAWP.2016.2591078

20. Nikfalazar, M., A. Mehmood, M. Sohrabi, and M. Mikolajek, "Steerable dielectric resonator phased-array antenna based on inkjet-printed tunable phase shifter with BST metal-insulator-metal varactors," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 877-880, 2016.
doi:10.1109/LAWP.2015.2478959