1. Yao, G., "Research on dynamic modulation characteristics of terahertz metamaterials based on graphene plasma induced transparency,", Shanghai Jiaotong University, Shanghai, 2017 (in Chinese).
doi:10.7567/1882-0786/ab25c4 Google Scholar
2. Dai, L. L., Y. P. Zhang, H. Y. Zhang, and J. F. O'Hara, "Broadband tunable terahertz cross-polarization converter based on Dirac semimetals," Appl. Phys. Exp., Vol. 12, No. 7, 075003, 2019.
doi:10.1016/B978-0-323-90508-4.00004-6 Google Scholar
3. Lalbakhsh, A., R. B. Simorangkir, N. Bayat-Makou, A. A. Kishk, and K. P. Esselle, "Advancements and artificial intelligence approaches in antennas for environmental sensing," Artificial Intelligence and Data Science in Environmental Sensing, 19-38, 2022.
doi:10.1002/mmce.23033 Google Scholar
4. Das, P., K. Mandal, and A. Lalbakhsh, "Beam-steering of microstrip antenna using single-layer FSS based phase-shifting surface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 3, e23033, 2022.
doi:10.1016/j.matdes.2022.110855 Google Scholar
5. Esfandiyari, M., A. Lalbakhsh, S. Jarchi, M. Ghaffari-Miab, H. Noori Mahtaj, and R. B. V. B. Simorangkir, "Tunable terahertz filter/antenna-sensor using graphene-based metamaterials," Materials & Design, Vol. 220, 110855, 2022.
doi:10.1038/s41598-021-88547-3 Google Scholar
6. Lalbakhsh, A., M. U. Afzal, T. Hayat, K. P. Esselle, and K. Mandal, "All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources," Scientific Reports, Vol. 11, No. 1, 1-9, 2021.
doi:10.1021/nl902621d Google Scholar
7. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Letters, Vol. 10, No. 4, 1103-1107, 2010.
doi:10.1088/1361-6463/aadb7f Google Scholar
8. Liu, T. T., H. X. Wang, Y. Liu, L. S. Xiao, C. B. Zhou, Y. B. Liu, C. Xu, and S. Y. Xiao, "Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal-graphene metamaterial," J. Phys. D: Appl. Phys., Vol. 51, 415105, 2018.
doi:10.1016/j.optlastec.2013.01.007 Google Scholar
9. Zhang, Y. D., J. Li, H. Y. Li, C. B. Yao, and P. Yuan, "Plasmon-induced-transparency in subwavelength structures," Optics and Laser Technology, Vol. 49, 202-208, 2013.
doi:10.1063/1.3653242 Google Scholar
10. Wu, J. B., B. B. Jin, J. Wan, L. J. Liang, Y. G. Zhang, T. Jia, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, "Superconducting terahertz metamaterials mimicking electromagnetically induced transparency," Applied Physics Letters, Vol. 99, No. 16, 161113, 2011.
doi:10.1016/j.bios.2021.113241 Google Scholar
11. Zhang, J., N. Mu, L. H. Liu, J. H. Xie, H. Feng, J. Q. Yao, T. A. Chen, and W. R. Zhu, "Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency," Biosensors and Bioelectronics, Vol. 185, 113241, 2021.
doi:10.1016/j.bios.2018.11.014 Google Scholar
12. Yan, X., M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, "The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells," Biosensors and Bioelectronics, Vol. 126, 485-492, 2019.
doi:10.2528/PIERM19122101 Google Scholar
13. Zhang, Y. G., C. Li, and X. Tu, "Tuning electromagnetically induced transparency of superconducting metamaterial analyzed with equivalent circuit approach," Progress In Electromagnetics Research M, Vol. 91, 29-37, 2020.
doi:10.1126/science.aab2051 Google Scholar
14. Rodrigo, D., O. Limaj, D. Janner, D. Etezadi, J. G. de Abajo, V. Pruneri, and H. Altug, "Mid-infrared plasmonic biosensing with graphene," Science, Vol. 349, No. 6244, 165-168, 2015.
doi:10.1364/OME.9.001562 Google Scholar
15. Wang, T. L., M. Y. Cao, Y. P. Zhang, and H. Y. Zhang, "Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies," Opt. Mater. Express, Vol. 9, 1562-1576, 2019.
doi:10.1021/acsphotonics.7b01551 Google Scholar
16. Kim, T. T., H. D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, "Electrically tunable slow light using graphene metamaterials," ACS Photonics: Acsphotonics, Vol. 5, No. 5, 1800-1807, 2018.
doi:10.1002/advs.202070080 Google Scholar
17. Hu, Y. Z., J. You, M. Y. Tong, X. Zheng, Z. J. Xu, X. G. Cheng, and T. Jiang, "Metaphotonic devices: Pump-color selective control of ultrafast all-optical switching dynamics in metaphotonic devices," Advanced Science, Vol. 7, No. 14, 2070080, 2020.
doi:10.1364/OE.19.021652 Google Scholar
18. Jin, X. R., J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, "Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling," Optics Express, Vol. 19, No. 22, 21652, 2011.
doi:10.1109/JLT.2018.2836904 Google Scholar
19. Peng, L., F. X. Li, X. Jiang, and S. M. Li, "A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating by graphene," Journal of Light Wave Technology, Vol. 36, No. 19, 4250-4258, 2018.
doi:10.1364/OE.24.011466 Google Scholar
20. Sun, C., J. N. Si, Z. W. Dong, and X. X. Deng, "Tunable multispectral plasmon induced transparency based on graphene metamaterials," Optics Express, Vol. 24, No. 11, 11466, 2016.
doi:10.1016/j.matdes.2022.110920 Google Scholar
21. Esfandiari, M., A. Lalbakhsh, P. Shehni, S. Jarchi, M. Miab, H. Mahtaj, S. Reisenfeld, M. Alibakhshikenari, S. Kozieł, and S. Szczepański, "Recent and emerging applications of graphene-based metamaterials in electromagnetics," Materials & Design, Vol. 221, 110920, 2022.
doi:10.1364/OE.21.028438 Google Scholar
22. Shi, X., D. Z. Han, Y. Y. Dai, Z. F. Yu, Y. Sun, H. Chen, X. H. Liu, and J. Zi, "Plasmonic analog of electromagnetically induced transparency in nanostructure graphene," Optics Express, Vol. 21, No. 23, 28438-28443, 2013.
doi:10.1063/1.4831776 Google Scholar
23. Cheng, H., S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, "Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips," Applied Physics Letters, Vol. 103, No. 20, 36, 2013.
doi:10.1364/PRJ.6.000692 Google Scholar
24. Xia, S. X., Z. Xiang, L. L. Wang, and S. G. Wen, "Plasmonically induced transparency in double-layered graphene nanoribbons," Photonics Research, Vol. 6, No. 7, 31-41, 2018.
doi:10.1016/j.rinp.2021.104040 Google Scholar
25. Zheng, S. Q., Q. X. Zhao, L. Peng, and X. Jiang, "Tunable plasmon induced transparency with high transmittance in a two-layer graphene structure," Results in Physics, Vol. 7, 104040, 2021.
doi:10.3724/SP.J.1249.2021.05536 Google Scholar
26. Zhao, Q. X., M. S. Ma, and S. Q. Zheng, "Plasma induced transparency based on graphene super surface," Journal of Shenzhen University Science and Engineering, Vol. 38, No. 5, 536-542, 2021.
doi:10.1016/j.xcrp.2022.100939 Google Scholar
27. Sun, T. Y., J. Tu, Z. P. Zhou, R. Sun, X. W. Zhang, H. O. Li, Z. M. Xu, Y. Peng, X. P. Liu, P. H. Wang, and Z. C. Wang, "Resistive switching of self-assembly stacked h-BN polycrystal film," Cell Reports Physical Science, Vol. 3, 100939, 2022.
doi:10.1016/j.matdes.2020.108960 Google Scholar
28. Sun, T. Y., Y. Liu, J. Tu, Z. P. Zhou, L. Cao, X. P. Liu, H. O. Li, Q. Li, T. Fu, F. B. Zhang, and Z. Q. Yu, "Wafer-scale high anti-reflective nano/micro hybrid interface structures via aluminum grain dependent self-organization," Materials & Design, Vol. 194, 108960, 2020. Google Scholar
29. Gong, Y. M., F. R. Hu, M. Z. Jiang, L. H. Zhang, Y. C. Zou, G. B. Jiang, and Y. C. Liu, "Terahertz binary coder based on graphene metasurface," Carbon, Vol. 184, No. 1, 2021.
doi:10.1364/OE.390835 Google Scholar
30. Xu, K. D., J. X. Li, A. X. Zhang, and Q. Chen, "Tunable multi-band terahertz absorber using asingle-layer square graphene ring structure with T-shaped graphene strips," Optics Express, Vol. 28, No. 8, 11482-11492, 2020. Google Scholar
31. Sun, C., Z. W. Dong, J. G. Si, and X. X. Deng, "Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies," Optics Express, Vol. 25, No. 1, 2017.
doi:10.1088/1361-6463/ac5e1a Google Scholar
32. Zheng, S. Q., M. S. Ma, Y. Lv, T. Fu, L. Peng, and Q. X. Zhao, "Dual-band electromagnetically induced transparent metamaterial with slow light effect and energy storage," Journal of Physics D: Applied Physics, Vol. 55, No. 25, 255103, 2022.
doi:10.1038/nmat2495 Google Scholar
33. Liu, N., L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nature Materials, Vol. 8, No. 9, 758-762, 2009.
doi:10.1021/nl200197j Google Scholar
34. Artar, A., A. A. Yanik, and H. Altug, "Multispectral plasmon induced transparency in coupled meta-atoms," Nano. Letters, Vol. 11, No. 4, 1685-1689, 2011.
doi:10.1088/1674-1056/28/2/026102 Google Scholar
35. Jia, W., P. W. Ren, Y. C. Tian, and C. Z. Fan, "Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials," Chin. Phys. B., Vol. 28, No. 2, 026102, 2019.
doi:10.1016/j.optcom.2021.126949 Google Scholar
36. Kumar, D., K. M. Devi, R. Kumar, and D. R. Chowdhury, "Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces," Optics Communications, Vol. 491, 126949, 2021.
doi:10.1007/s11082-021-03311-1 Google Scholar
37. Li, H. M. and Y. C. Zhang, "A low-loss, polarization-insensitive and tunable electromagnetically induced transparency," Optical and Quantum Electronics, Vol. 53, 643, 2021. Google Scholar