1. Bukhari, S. S., J. Y. Vardaxoglou, and W. Whittow, "A metasurfaces review: Definitions and applications," Appl. Sci., Vol. 9, No. 13, 2727, 2019.
doi:10.3390/app9132727 Google Scholar
2. Glybovski, S. B., S. A. Tretyako, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, "Metasurfaces: From microwaves to visible," Phy. Rep., No. 634, 1-72, 2016.
doi:10.1016/j.physrep.2016.04.004 Google Scholar
3. Felbacq, D. and G. Boucitte, Metamaterials Modelling and Design, Pan Standford, 2017.
doi:10.1201/9781315365008
4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
doi:10.1002/0471754323
5. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "Low-cost nonuniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3328-3335, 2020.
doi:10.1109/TAP.2020.2969888 Google Scholar
6. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "A high-gain wideband EBG resonator antenna for 60 GHz unlicenced frequency band," 12th European Conference on Antennas and Propagation (EuCAP 2018), 1-3, 2018. Google Scholar
7. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations," IEEE Trans. Antennas Propag., Vol. 70, No. 4, 2790-2800, April 2022.
doi:10.1109/TAP.2021.3138256 Google Scholar
8. Lalbakhsh, A., M. U. Afzal, T. Hayat, K. P. Esselle, and K. Mandal, "All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources," Sci. Rep., Vol. 11, Article number: 9421, 2021.
doi:10.1038/s41598-021-88547-3 Google Scholar
9. He, Q., S. Sun, and L. Zhou, "Tunable/reconfigurable metasurfaces: Physics and applications," Research, Vol. 2019, Article ID 1849272, 2019. Google Scholar
10. Esfandiyari, M., A. Lalbakhsh, S. Jarchi, M. G. Miab, H. N. Mahtaj, and R. B. V. B. Simorangkir, "Tunable terahertz filter/antenna-sensor using graphene-based metamaterials," Materials & Design, Vol. 220, 110855, 2022.
doi:10.1016/j.matdes.2022.110855 Google Scholar
11. Das, P., K. Mandal, and A. Lalbakhsh, "Beam-steering of microstrip antenna using single-layer FSS based phase-shifting surface," Int. J. RF. Microw. C. E., Vol. 32, No. 3, 23033, 2022. Google Scholar
12. Das, P., K. Mandal, and A. Lalbakhsh, "Single-layer polarization-insensitive frequency selective surface for beam reconfigurability of monopole antennas," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 1, 86-102, 2020.
doi:10.1080/09205071.2019.1688693 Google Scholar
13. Paul, G. S., K. Mandal, and A. Lalbakhsh, "Single-layer ultra-wide stop-band frequency selective surface using interconnected square rings," AEU --- Int. J. Electron. Commun., Vol. 132, 153630, 2020. Google Scholar
14. Markovich, H., D. Filonov, I. Shishkin, and P. Ginzburg, "Bifocal fresnel lens based on the polarization-sensitive metasurface," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2650-2654, 2018.
doi:10.1109/TAP.2018.2811717 Google Scholar
15. Zhao, M., S. Zhu, H. Huang, D. Hu, X. Chen, J. Chen, and A. Zhang, "Frequency-polarization sensitive metasurface antenna for coincidence imaging," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 7, 1274-1278, 2021.
doi:10.1109/LAWP.2021.3077556 Google Scholar
16. Peng, C., K. Ou, G. Li, Z. Zhao, X. Li, C. Liu, X. Li, X. Chen, and W. Lu, "Tunable and polarization-sensitive perfect absorber with a phase-gradient heterojunction metasurface in the mid-infrared," Opt. Express, Vol. 29, No. 9, 12893-12902, 2021.
doi:10.1364/OE.422519 Google Scholar
17. Yu, F., G. Q. He, X. X. Yang, J. Du, and S. Gao, "Polarization-insensitive metasurface for harvesting electromagnetic energy with high efficiency and frequency stability over wide range of incidence angles," App. Sci., Vol. 10, No. 22, 8047, 2020.
doi:10.3390/app10228047 Google Scholar
18. Tirkey, M. M. and N. Gupta, "A novel ultrathin checkerboard inspired ultrawideband metasurface absorber," IEEE Trans. Electromagn. Compat., Vol. 64, No. 1, 66-74, 2021.
doi:10.1109/TEMC.2021.3091767 Google Scholar
19. Shukoor, M. A., S. Dey, and S. K. Koul, "A simple polarization-insensitive and wide angular stable circular ring based undeca-band absorber for EMI/EMC applications," IEEE Trans. Electromagn. Compat., Vol. 63, No. 4, 1025-1034, 2021.
doi:10.1109/TEMC.2021.3075730 Google Scholar
20. Xu, H. X., S. Wang, C. Wang, M. Wang, Y. Wang, and Q. Peng, "Polarization-insensitive metalens and its applications to reflectarrays with polarization diversity," IEEE Trans. Antennas Propag., Vol. 70, No. 3, 1895-1905, 2021.
doi:10.1109/TAP.2021.3112553 Google Scholar
21. Hesmer, F., E. Tatartschuk, O. Zhuromskyy, A. A. Radkovskaya, M. Shamonin, T. Hao, C. J. Stevens, G. Faulkner, D. J. Edwards, and E. Shamonina, "Coupling mechanisms for split ring resonators: Theory and experiment," Phys. Status Solidi B, Vol. 244, No. 4, 1170-1175, 2007.
doi:10.1002/pssb.200674501 Google Scholar
22. Jaksic, Z., S. Vukovic, J. Matovic, and D.Tanaslovic, "Negative refractive index metasurfaces for enhanced biosensing," Materials, Vol. 4, No. 1, 1-36, 2010.
doi:10.3390/ma4010001 Google Scholar
23. Penciu, R. S., K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Express, Vol. 16, No. 22, 18131-18144, 2018.
doi:10.1364/OE.16.018131 Google Scholar
24. Wahidi, M. S., M. I. Khan, F. A. Tahir, and H. Rmili, "Multifunctional single layer metasurface based on hexagonal split ring resonator," IEEE Access, Vol. 8, 28054-28063, 2020. Google Scholar
25. Zhong, H. T., X. X. Yang, C. Tan, and K. Yu, "Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting," Appl. Phys. Lett., Vol. 109, No. 25, 253904, 2016.
doi:10.1063/1.4973282 Google Scholar
26. Miyamaru, F., S. Kubota, T. Nakanishi, S. Kawashima, N. Sato, M. Kitano, and M. W. Takeda, "Transmission properties of double-gap asymmetric split ring resonators in terahertz region," Appl. Phys. Lett., Vol. 101, No. 5, 051112, 2012.
doi:10.1063/1.4739945 Google Scholar
27. Assimonis, S. D. and V. Fusco, "Polarization insensitive, wide-angle, ultra-wideband, flexible, resistively loaded, electromagnetic metamaterial absorber using conventional iinkjet-printing technology," Sci. Rep., Vol. 9, No. 1, 1-15, 2019.
doi:10.1038/s41598-019-48761-6 Google Scholar
28. Bhope, V. and A. Harish, "A novel bandstop frequency selective surface using coupled split ring resonators," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 1745-1747, IEEE, 2019.
doi:10.1109/APMC46564.2019.9038271 Google Scholar
29. Mol, V. L. and C. Aanandan, "An ultrathin microwave metamaterial absorber with enhanced bandwidth and angular stability," J. Phys. Commun., Vol. 1, No. 1, 015003, 2017.
doi:10.1088/2399-6528/aa80c1 Google Scholar
30. Ghaneizadeh, A., M. Joodaki, J. Borcsok, A. Golmakani, and K. Mafinezhad, "Analysis, design, and implementation of a new extremely ultrathin 2-D-isotropic flexible energy harvester using symmetric patch FSS," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 6, 2108-2115, 2020.
doi:10.1109/TMTT.2020.2982386 Google Scholar
31. Jilani, S. F., O. P. Falade, T. Wildsmith, P. Reip, and A. Alomainy, "A 60-GHz ultra-thin and flexible metasurface for frequency-selective wireless applications," App. Sci., Vol. 9, No. 5, 945, 2019.
doi:10.3390/app9050945 Google Scholar
32. Yong, W. Y., S. K. A. Rahim, M. Himdi, F. C. Seman, D. L. Suong, M. R. Ramli, and H. A. Elmobarak, "Flexible convoluted ring shaped FSS for X-band screening application," IEEE Access, Vol. 6, 11657-11665, 2018.
doi:10.1109/ACCESS.2018.2804091 Google Scholar