Vol. 107
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-11-11
Conjugated Split-Ring Resonators-Based Ultrathin, Polarization- and Angle-Insensitive Metasurface
By
Progress In Electromagnetics Research Letters, Vol. 107, 125-131, 2022
Abstract
We show a new polarization- and angle-insensitive ultrathin metasurface design using four conjugated hexagonal split-ring resonators (CHSRRs). The CHSRRs are made of copper and arranged in a λ/4 cell-size polyimide film substrate with a dielectric constant of 3.5 and thickness of 0.2 mm (λ/400 at 3.75 GHz). Each CHSRR aperture faces one corner of the square unit cell, thus forming a conjugated loop to achieve TE and TM polarization-insensitive behavior in a wide range of incident angles. Results demonstrated a -10 dB impedance bandwidth of 530 MHz (3.44 to 3.97 GHz) under normal incidence, partially covering the n77 band used for 5G applications.
Citation
Evandro César Vilas Boas, Jorge Ricardo Mejia-Salazar, and Felipe Augusto Pereira De Figueiredo, "Conjugated Split-Ring Resonators-Based Ultrathin, Polarization- and Angle-Insensitive Metasurface," Progress In Electromagnetics Research Letters, Vol. 107, 125-131, 2022.
doi:10.2528/PIERL22082601
References

1. Bukhari, S. S., J. Y. Vardaxoglou, and W. Whittow, "A metasurfaces review: Definitions and applications," Appl. Sci., Vol. 9, No. 13, 2727, 2019.
doi:10.3390/app9132727

2. Glybovski, S. B., S. A. Tretyako, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, "Metasurfaces: From microwaves to visible," Phy. Rep., No. 634, 1-72, 2016.
doi:10.1016/j.physrep.2016.04.004

3. Felbacq, D. and G. Boucitte, Metamaterials Modelling and Design, Pan Standford, 2017.
doi:10.1201/9781315365008

4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
doi:10.1002/0471754323

5. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "Low-cost nonuniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3328-3335, 2020.
doi:10.1109/TAP.2020.2969888

6. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "A high-gain wideband EBG resonator antenna for 60 GHz unlicenced frequency band," 12th European Conference on Antennas and Propagation (EuCAP 2018), 1-3, 2018.

7. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations," IEEE Trans. Antennas Propag., Vol. 70, No. 4, 2790-2800, April 2022.
doi:10.1109/TAP.2021.3138256

8. Lalbakhsh, A., M. U. Afzal, T. Hayat, K. P. Esselle, and K. Mandal, "All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources," Sci. Rep., Vol. 11, Article number: 9421, 2021.
doi:10.1038/s41598-021-88547-3

9. He, Q., S. Sun, and L. Zhou, "Tunable/reconfigurable metasurfaces: Physics and applications," Research, Vol. 2019, Article ID 1849272, 2019.

10. Esfandiyari, M., A. Lalbakhsh, S. Jarchi, M. G. Miab, H. N. Mahtaj, and R. B. V. B. Simorangkir, "Tunable terahertz filter/antenna-sensor using graphene-based metamaterials," Materials & Design, Vol. 220, 110855, 2022.
doi:10.1016/j.matdes.2022.110855

11. Das, P., K. Mandal, and A. Lalbakhsh, "Beam-steering of microstrip antenna using single-layer FSS based phase-shifting surface," Int. J. RF. Microw. C. E., Vol. 32, No. 3, 23033, 2022.

12. Das, P., K. Mandal, and A. Lalbakhsh, "Single-layer polarization-insensitive frequency selective surface for beam reconfigurability of monopole antennas," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 1, 86-102, 2020.
doi:10.1080/09205071.2019.1688693

13. Paul, G. S., K. Mandal, and A. Lalbakhsh, "Single-layer ultra-wide stop-band frequency selective surface using interconnected square rings," AEU --- Int. J. Electron. Commun., Vol. 132, 153630, 2020.

14. Markovich, H., D. Filonov, I. Shishkin, and P. Ginzburg, "Bifocal fresnel lens based on the polarization-sensitive metasurface," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2650-2654, 2018.
doi:10.1109/TAP.2018.2811717

15. Zhao, M., S. Zhu, H. Huang, D. Hu, X. Chen, J. Chen, and A. Zhang, "Frequency-polarization sensitive metasurface antenna for coincidence imaging," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 7, 1274-1278, 2021.
doi:10.1109/LAWP.2021.3077556

16. Peng, C., K. Ou, G. Li, Z. Zhao, X. Li, C. Liu, X. Li, X. Chen, and W. Lu, "Tunable and polarization-sensitive perfect absorber with a phase-gradient heterojunction metasurface in the mid-infrared," Opt. Express, Vol. 29, No. 9, 12893-12902, 2021.
doi:10.1364/OE.422519

17. Yu, F., G. Q. He, X. X. Yang, J. Du, and S. Gao, "Polarization-insensitive metasurface for harvesting electromagnetic energy with high efficiency and frequency stability over wide range of incidence angles," App. Sci., Vol. 10, No. 22, 8047, 2020.
doi:10.3390/app10228047

18. Tirkey, M. M. and N. Gupta, "A novel ultrathin checkerboard inspired ultrawideband metasurface absorber," IEEE Trans. Electromagn. Compat., Vol. 64, No. 1, 66-74, 2021.
doi:10.1109/TEMC.2021.3091767

19. Shukoor, M. A., S. Dey, and S. K. Koul, "A simple polarization-insensitive and wide angular stable circular ring based undeca-band absorber for EMI/EMC applications," IEEE Trans. Electromagn. Compat., Vol. 63, No. 4, 1025-1034, 2021.
doi:10.1109/TEMC.2021.3075730

20. Xu, H. X., S. Wang, C. Wang, M. Wang, Y. Wang, and Q. Peng, "Polarization-insensitive metalens and its applications to reflectarrays with polarization diversity," IEEE Trans. Antennas Propag., Vol. 70, No. 3, 1895-1905, 2021.
doi:10.1109/TAP.2021.3112553

21. Hesmer, F., E. Tatartschuk, O. Zhuromskyy, A. A. Radkovskaya, M. Shamonin, T. Hao, C. J. Stevens, G. Faulkner, D. J. Edwards, and E. Shamonina, "Coupling mechanisms for split ring resonators: Theory and experiment," Phys. Status Solidi B, Vol. 244, No. 4, 1170-1175, 2007.
doi:10.1002/pssb.200674501

22. Jaksic, Z., S. Vukovic, J. Matovic, and D.Tanaslovic, "Negative refractive index metasurfaces for enhanced biosensing," Materials, Vol. 4, No. 1, 1-36, 2010.
doi:10.3390/ma4010001

23. Penciu, R. S., K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Express, Vol. 16, No. 22, 18131-18144, 2018.
doi:10.1364/OE.16.018131

24. Wahidi, M. S., M. I. Khan, F. A. Tahir, and H. Rmili, "Multifunctional single layer metasurface based on hexagonal split ring resonator," IEEE Access, Vol. 8, 28054-28063, 2020.

25. Zhong, H. T., X. X. Yang, C. Tan, and K. Yu, "Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting," Appl. Phys. Lett., Vol. 109, No. 25, 253904, 2016.
doi:10.1063/1.4973282

26. Miyamaru, F., S. Kubota, T. Nakanishi, S. Kawashima, N. Sato, M. Kitano, and M. W. Takeda, "Transmission properties of double-gap asymmetric split ring resonators in terahertz region," Appl. Phys. Lett., Vol. 101, No. 5, 051112, 2012.
doi:10.1063/1.4739945

27. Assimonis, S. D. and V. Fusco, "Polarization insensitive, wide-angle, ultra-wideband, flexible, resistively loaded, electromagnetic metamaterial absorber using conventional iinkjet-printing technology," Sci. Rep., Vol. 9, No. 1, 1-15, 2019.
doi:10.1038/s41598-019-48761-6

28. Bhope, V. and A. Harish, "A novel bandstop frequency selective surface using coupled split ring resonators," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 1745-1747, IEEE, 2019.
doi:10.1109/APMC46564.2019.9038271

29. Mol, V. L. and C. Aanandan, "An ultrathin microwave metamaterial absorber with enhanced bandwidth and angular stability," J. Phys. Commun., Vol. 1, No. 1, 015003, 2017.
doi:10.1088/2399-6528/aa80c1

30. Ghaneizadeh, A., M. Joodaki, J. Borcsok, A. Golmakani, and K. Mafinezhad, "Analysis, design, and implementation of a new extremely ultrathin 2-D-isotropic flexible energy harvester using symmetric patch FSS," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 6, 2108-2115, 2020.
doi:10.1109/TMTT.2020.2982386

31. Jilani, S. F., O. P. Falade, T. Wildsmith, P. Reip, and A. Alomainy, "A 60-GHz ultra-thin and flexible metasurface for frequency-selective wireless applications," App. Sci., Vol. 9, No. 5, 945, 2019.
doi:10.3390/app9050945

32. Yong, W. Y., S. K. A. Rahim, M. Himdi, F. C. Seman, D. L. Suong, M. R. Ramli, and H. A. Elmobarak, "Flexible convoluted ring shaped FSS for X-band screening application," IEEE Access, Vol. 6, 11657-11665, 2018.
doi:10.1109/ACCESS.2018.2804091