Vol. 114
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-11-23
Electromagnetic Equivalence Principle Formulation for Optical Forces on Particles in Arbitrary Fields
By
Progress In Electromagnetics Research M, Vol. 114, 139-152, 2022
Abstract
The computation of the fields scattered by a dielectric sphere illuminated by a plane wave and the evaluation of the resultant optical forces is a classical problem that can be analytically solved using Mie theory. Whereas extending said formulation to arbitrary incident fields does not pose any conceptual difficulty, the actual computation of the scattering coefficients and force components substantially grows in complexity as soon as interactions beyond the electric dipole arise. By formulating an equivalent electromagnetic problem, we derive a set of computationally efficient formulas for the evaluation of scattering and optical forces exerted by arbitrary incident fields upon dielectric spheres in the Mie regime. As opposed to force calculations by direct integration of the Maxwell’s Stress Tensor, the present formulation relies on a set of universal interaction coefficients that do not require any problem-specific integration and can therefore be all precomputed and tabulated. The proposed methods can be easily integrated with the T-Matrix method to calculate forces on non-spherical dielectric objects.
Citation
Justinas Lialys Laurynas Lialys Shima Fardad Alessandro Salandrino , "Electromagnetic Equivalence Principle Formulation for Optical Forces on Particles in Arbitrary Fields," Progress In Electromagnetics Research M, Vol. 114, 139-152, 2022.
doi:10.2528/PIERM22083003
http://www.jpier.org/PIERM/pier.php?paper=22083003
References

1. Stratton, J. A., Electromagnetic Theory, John Wiley & Sons, 2007.

2. Salandrino, A., S. Fardad, and D. N. Christodoulides, "Generalized Mie theory of optical forces," JOSA B, Vol. 29, No. 4, 855-866, 2012.
doi:10.1364/JOSAB.29.000855

3. Felderhof, B. and R. Jones, "Addition theorems for spherical wave solutions of the vector Helmholtz equation," Journal of Mathematical Physics, Vol. 28, No. 4, 836-839, 1987.
doi:10.1063/1.527572

4. Rotenberg, M., R. Bivins, N. Metropolis, J. K. Wooten, and L. Biedenharn, "The 3-j and 6-j symbols," Physics Today, Vol. 13, No. 10, 52, 1960.
doi:10.1063/1.3062771

5. Messiah, A., Quantum Mechanics: Volume II, North-Holland Publishing Company Amsterdam, 1962.

6. Albaladejo, S., M. I. Marques, M. Laroche, and J. J. Saenz, "Scattering forces from the curl of the spin angular momentum of a light field," Phys. Rev. Lett., Vol. 102, No. 11, 113602, 2009.
doi:10.1103/PhysRevLett.102.113602

7. Gordon, J. P., "Radiation forces and momenta in dielectric media," Phys. Rev. A, Vol. 8, No. 1, 14-21, 1973.
doi:10.1103/PhysRevA.8.14

8. Chaumet, P. C. and M. Nieto-Vesperinas, "Time-averaged total force on a dipolar sphere in an electromagnetic field," Opt. Lett., Vol. 25, No. 15, 1065-1067, 2000.
doi:10.1364/OL.25.001065

9. Fardad, S., A. Salandrino, A. Samadi, M. Heinrich, Z. Chen, and D. N. Christodoulides, "Scattering detection of a solenoidal Poynting vector field," Opt. Lett., Vol. 41, No. 15, 3615-3618, 2016, [Online], Available: http://ol.osa.org/abstract.cfm?URI=ol-41-15-3615.
doi:10.1364/OL.41.003615

10. Salandrino, A. and D. N. Christodoulides, "Negative index Clarricoats-Waldron waveguides for terahertz and far infrared applications," Opt. Express, Vol. 18, No. 4, 3626-3631, Feb. 15, 2010.
doi:10.1364/OE.18.003626

11. Salandrino, A. and D. N. Christodoulides, "Reverse optical forces in negative index dielectric waveguide arrays," Opt. Lett., Vol. 36, No. 16, 3103-3105, 2011.
doi:10.1364/OL.36.003103

12. Butler, C., S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, Multispectral Optical Tweezers for Molecular Diagnostics of Single Biological Cells (SPIE BiOS), SPIE, 2012.

13. Korn, G. A. and T. M. Korn, Mathematical Handbook for Scientists and Engineers: De nitions, Theorems, and Formulas for Reference and Review, Courier Corporation, 2000.

14. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 2008.

15. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Courier Corporation, 1964.

16. Koshy, T., Discrete Mathematics with Applications, Elsevier, 2004.

17. Jackson, J. D., Classical Electrodynamics, Wiley, 1999.

18. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley Online Library, 2012.

19. Burns, M. M., J.-M. Fournier, and J. A. Golovchenko, "Optical matter: Crystallization and binding in intense optical fields," Science, Vol. 249, No. 4970, 749-754, 1990.
doi:10.1126/science.249.4970.749

20. Han, F. and Z. Yan, "Phase transition and self-stabilization of light-mediated metal nanoparticle assemblies," ACS Nano, Vol. 14, No. 6, 6616-6625, 2020.
doi:10.1021/acsnano.9b08015