1. Wheeler, H. A., "Fundamental limitations of small antennas," Proceedings of the IRE, Vol. 35, No. 12, 1479-1484, 1947.
doi:10.1109/JRPROC.1947.226199 Google Scholar
2. Davis, W. A., T. Yang, E. D. Caswell, and W. L. Stutzman, "Fundamental limits on antenna size: A new limit," IET Microwaves, Antennas & Propagation, Vol. 5, No. 11, 1297-1302, 2011.
doi:10.1049/iet-map.2010.0604 Google Scholar
3. Patel, R., A. Desai, and T. K. Upadhyaya, "An electrically small antenna using defected ground structure for RFID, GPS and IEEE 802.11 a/b/g/s applications," Progress In Electromagnetics Research Letters, Vol. 75, 75-81, 2018.
doi:10.2528/PIERL18021901 Google Scholar
4. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 691-707, 2008.
doi:10.1109/TAP.2008.916949 Google Scholar
5. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Electrically small patch antenna loaded with metamaterial," IETE Journal of Research, Vol. 56, No. 6, 373-379, 2010.
doi:10.1080/03772063.2010.10876328 Google Scholar
6. Itoh, T. and C. Caloz, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
doi:10.1002/0471754323
7. Dalgaç, Ş., F. Karadag, E. Ünal, V. Özkaner, M. Bakır, O. Akgöl, U. K. Sevim, et al. "Metamaterial sensor application concrete material reinforced with carbon steel fiber," Modern Physics Letters B, Vol. 34, No. 10, 2050097, 2020.
doi:10.1142/S0217984920500979 Google Scholar
8. Pandeeswari, R., "SRR and NBCSRR inspired CPW fed triple band antenna with modified ground plane," Progress In Electromagnetics Research C, Vol. 80, 111-118, 2018.
doi:10.2528/PIERC17101501 Google Scholar
9. Shobana, M., R. Pandeeswari, and S. Raghavan, "Design of sub-6 GHz antenna using negative permittivity metamaterial for 5G applications," International Journal of System Assurance Engineering and Management, 1-13, 2022. Google Scholar
10. Naidu, P. V., A. Kumar, and R. Rengasamy, "Uniplanar ACS fed multiband high-gain antenna with extended rectangular strips for portable system applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 10, e21870, 2019.
doi:10.1002/mmce.21870 Google Scholar
11. Naidu, P. and A. Malhotra, "Design & analysis of miniaturized asymmetric coplanar strip fed antenna for multi-band WLAN/WiMAX applications," Progress In Electromagnetics Research C, Vol. 57, 159-171, 2015.
doi:10.2528/PIERC15042302 Google Scholar
12. Kang, L., et al. "Compact ACS-fed monopole antenna with rectangular SRRs for tri-band operation," Electronics Letters, Vol. 50, No. 16, 1112-1114, 2014.
doi:10.1049/el.2014.1771 Google Scholar
13. Pillai, P. N. and R. Pandeeswari, "A compact uniplanar ACS-fed metamaterial inspired dual band antenna for S-band and C-band applications," Applied Physics A, Vol. 128, No. 4, 1-13, 2022.
doi:10.1007/s00339-022-05410-6 Google Scholar
14. Sharma, S. K., M. A. Abdalla, and R. K. Chaudhary, "An electrically small sicrr metamaterial-inspired dual-band antenna for WLAN and WiMAX applications," Microwave and Optical Technology Letters, Vol. 59, No. 3, 573-578, 2017.
doi:10.1002/mop.30339 Google Scholar
15. Boukarkar, A., et al. "Miniaturized single-feed multiband patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 850-854, 2016.
doi:10.1109/TAP.2016.2632620 Google Scholar
16. Ameen, M. and R. K. Chaudhary, "Quad-band electrically small dual-polarized ZOR antenna with improved bandwidth using single-split ring resonators and spiral slots enabled with reflector for GPS/UMTS/WLAN/WiMAX applications," 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), IEEE, 2019. Google Scholar
17. Arora, C., S. S. Pattnaik, and R. N. Baral, "Performance enhancement of patch antenna array for 5.8 GHz Wi-MAX applications using metamaterial inspired technique," AEU --- International Journal of Electronics and Communications, Vol. 79, 124-131, 2017.
doi:10.1016/j.aeue.2017.05.045 Google Scholar