1. Mei, P., G. F. Pedersen, and S. Zhang, "A broadband and FSS-based transmitarray antenna for 5G millimeter-wave applications," IEEE Antenna and Wireless Propagation Letters, Vol. 20, No. 1, 103-107, 2021.
doi:10.1109/LAWP.2020.3042295 Google Scholar
2. Deng, Z. H., F. W. Wang, Y. H. Ren, K. Li, and B. J. Gao, "A novel wideband low-RCS reflector by Hexagon polarization rotation surfaces," IEEE Access, Vol. 7, 131527-131533, 2019.
doi:10.1109/ACCESS.2019.2940616 Google Scholar
3. Omar, A. A., H. Huang, and Z. Shen, "Absorptive frequency-selective re ection/transmission structures: A review and future perspectives," IEEE Antenna and Propagation Magazine, Vol. 62, No. 4, 62-74, 2020.
doi:10.1109/MAP.2019.2943302 Google Scholar
4. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations," IEEE Transactions on Antennas Propagation, Vol. 70, No. 4, 2790-2800, 2022.
doi:10.1109/TAP.2021.3138256 Google Scholar
5. Katoch, K., N. Jaglan, and S. D. Gupta, "A review on frequency selective surfaces and its applications," 2019 International Conference on Signal Processing and Communications (ICSC), 75-81, Noida, India, 2019. Google Scholar
6. Hussein, M., J. Zhou, Y. Huang, and B. A. Juboori, "A low-profile miniaturized second-order bandpass frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2791-2794, 2017. Google Scholar
7. Tamoor, T., F. Ahmed, S. M. Q. A. Shah, T. Hassan, and N. Shoaib, "An FSS based stop band filter for EM shielding application," 2020 IEEE International Symposium on Electromagnetic Compatibility, 978-980, Rome, Italy, 2020. Google Scholar
8. Mahima, P., B. Sangeetha, S. Narayan, and R. U. Nair, "EM design of hybrid-element FSS structure for radome application," 2016 Annual Indian Conference (INDICON 2016), 126-129, Bangalore, India, 2016. Google Scholar
9. Luo, G. Q., W. Yu, Y. Yu, X. H. Zhang, and Z. Liao, "Bandpass absorptive frequency-selective structure using double-sided parallel-strip lines," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 9, 1596-1599, 2020.
doi:10.1109/LAWP.2020.3011507 Google Scholar
10. Jin, C., Q. Lv, and R. Mittra, "Dual-polarized frequency selective surface with two transmission zeros based on cascaded ground apertured annular ring resonators," IEEE Transactions on Antennas Propagation, Vol. 66, No. 8, 4077-4085, 2018.
doi:10.1109/TAP.2018.2839898 Google Scholar
11. Chen, G. W., S. W. Wong, Y. Li, R. S. Chen, L. Zhang, A. K. Rashid, N. Xie, and L. Zhu, "High roll-off frequency selective surface with quasi-elliptic bandpass response," IEEE Transactions on Antennas Propagation, Vol. 69, No. 9, 5740-5749, 2021.
doi:10.1109/TAP.2021.3060148 Google Scholar
12. Xie, J. M., B. Li, Y. P. Lyu, and L. Zhu, "Single- and dual-band high-order bandpass frequency selective surfaces based on aperture-coupled dual-mode patch resonators," IEEE Transactions on Antennas Propagation, Vol. 69, No. 4, 2130-2141, 2021.
doi:10.1109/TAP.2020.3026863 Google Scholar
13. Chou, H. H. and G. J. Ke, "Narrow bandpass frequency selective surface with high level of angular stability at Ka-band," IEEE Microwave Wireless Components Letters, Vol. 31, No. 4, 361-364, 2021.
doi:10.1109/LMWC.2021.3054016 Google Scholar
14. Yu, W., G. Q. Luo., Y. Yu, W. Cao, Y. Pan, and Z. Shen, "Dual-polarized band-absorptive frequency selective rasorber using meander-line and lumped resistors," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1318-1322, 2019.
doi:10.1109/TAP.2018.2883643 Google Scholar