Vol. 126
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-13
An off-Grid Compressed Sensing Method for Synthesis of Maximally Sparse Arrays with Arbitrary Beampatterns
By
Progress In Electromagnetics Research C, Vol. 126, 227-241, 2022
Abstract
Most of the works on sparse array synthesizing via the compressed sensing (CS) approach assume that the active elements exactly lie on the predefined grids. In fact, grid-mismatch error is unavoidable when an array aperture is discretized into grids, and the synthesizing results largely depend on the density of the grids. To overcome this limitation, an innovative off-grid CS approach is proposed for jointly estimating the excitations and positions of array elements. The synthesis problem is specifically formulated using a ridge regression model based on dynamic grids. The candidate positions of elements are treated as variables rather than constants predefined by discretization. Numerical experiments are conducted to validate the effectiveness and flexibility of the proposed method in realizing several maximally sparse arrays meeting the targeted patterns, i.e., the focused and shaped beam patterns of 1-D and 2-D arrays.
Citation
Xiaowen Zhao, and Yunhua Zhang, "An off-Grid Compressed Sensing Method for Synthesis of Maximally Sparse Arrays with Arbitrary Beampatterns," Progress In Electromagnetics Research C, Vol. 126, 227-241, 2022.
doi:10.2528/PIERC22092702
References

1. Jeon, S. I., Y. W. Kim, and D. G. Oh, "A new active phased array antenna for mobile direct broadcasting satellite reception," IEEE Trans. Broadcast., Vol. 46, No. 1, 34-40, 2000.
doi:10.1109/11.845863        Google Scholar

2. Kirkebo, J. E. and A. Austeng, "Sparse cylindrical sonar arrays," IEEE Journal of Oceanic Engineering, Vol. 33, 224-231, 2008.
doi:10.1109/JOE.2008.923553        Google Scholar

3. Stailey, J. E. and K. D. Hondl, "Multifunction phased array radar for aircraft and weather surveillance," Proc. IEEE, Vol. 104, No. 3, 649-659, 2016.
doi:10.1109/JPROC.2015.2491179        Google Scholar

4. Taylor, A. R., "The square kilometre array," IAU Syms., Vol. 291, 337-341, 2013.        Google Scholar

5. Ko, C. C., H. Nguyen-Le, and L. Huang, "ML-based follower jamming rejection in slow FH/MFSK systems with an antenna array," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1935-1948, 2010.
doi:10.1109/TAP.2010.2046858        Google Scholar

6. Wu, J., C. Zhang, H. Liu, and J. Yan, "Performance analysis of circular antenna array for microwave interferometric radiometers," IEEE Trans. Geosci. Remote Sens., Vol. 55, No. 6, 3261-3271, 2017.
doi:10.1109/TGRS.2017.2667042        Google Scholar

7. Oliveri, G., L. Manica, and A. Massa, "ADS-based guidelines for thinned planar arrays," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1935-1948, 2010.
doi:10.1109/TAP.2010.2046858        Google Scholar

8. Chen, Y., X. Ding, W. Shao, and C. Liao, "A high-gain sparse phased array with wide-angle scanning performance and low sidelobe levels," IEEE Access, Vol. 7, 31151-31158, 2019.
doi:10.1109/ACCESS.2019.2901721        Google Scholar

9. Chen, K., X. Yun, Z. He, and C. Han, "Synthesis of sparse planar arrays using modified real genetic algorithms," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1067-1073, 2007.
doi:10.1109/TAP.2007.893375        Google Scholar

10. Liu, Y., Z. Nie, and Q. H. Liu, "Reducing the number of elements in a linear antenna array by the matrix pencil method," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 2955-2962, 2008.
doi:10.1109/TAP.2008.928801        Google Scholar

11. Massa, A., P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics --- A review," IEEE Antennas Propag. Mag., Vol. 57, No. 1, 224-238, 2015.
doi:10.1109/MAP.2015.2397092        Google Scholar

12. Chen, K. S., H. Chen, L. Wang, and H. Wu, "Modified real GA for the synthesis of sparse planar circular arrays," IEEE Antennas Wireless Propag. Lett., Vol. 15, 274-277, 2016.
doi:10.1109/LAWP.2015.2440432        Google Scholar

13. Dai, D. C., M. L. Yao, H. G. Ma, W. Jin, and F. G. Zhang, "An asymmetric mapping method for the synthesis of sparse planar," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 1, 70-73, 2018.
doi:10.1109/LAWP.2017.2774498        Google Scholar

14. Li, L. H., Y. C. Jiang, Y. Ding, and J. Zhou, "Low-sidelobe pattern synthesis for sparse conformal arrays based on PSO-SOCP optimization," IEEE Access, Vol. 6, 77429-77439, 2018.
doi:10.1109/ACCESS.2018.2883042        Google Scholar

15. Liu, Y., Q. H. Liu, and Z. Nie, "Reducing the number of elements in the synthesis of shaped-beam pattern by the forward-backward matrix pencil method," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 604-608, 2010.
doi:10.1109/TAP.2009.2037709        Google Scholar

16. Liu, Y., Q. H. Liu, and Z. Nie, "Reducing the number of elements in multiple-pattern linear arrays by the extended matrix pencil methods," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 652-660, 2014.
doi:10.1109/TAP.2013.2292529        Google Scholar

17. Shen, H. and B. Wang, "Two-dimensional unitary matrix pencil method for synthesizing sparse planar arrays," Digital Signal Process., Vol. 73, 40-46, 2018.
doi:10.1016/j.dsp.2017.10.019        Google Scholar

18. Gong, Y., S. Xiao, and B. Wang, "Synthesis of sparse planar arrays with multiple patterns by the generalized matrix enhancement and matrix pencil," IEEE Trans. Antennas Propag., Vol. 69, No. 2, 869-881, 2021.
doi:10.1109/TAP.2020.3016484        Google Scholar

19. Oliveri, G. and A. Massa, "Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 467-481, 2011.
doi:10.1109/TAP.2010.2096400        Google Scholar

20. Zhang, W., L. Li, and F. Li, "Reducing the number of elements in linear and planar antenna arrays with sparseness constrained optimization," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 3106-3111, 2011.
doi:10.1109/TAP.2011.2158943        Google Scholar

21. Oliveri, G., M. Carlin, and A. Massa, "Complex-weight sparse linear array synthesis by bayesian compressive sampling," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2309-2326, 2012.
doi:10.1109/TAP.2012.2189742        Google Scholar

22. Viani, F., G. Oliveri, and A. Massa, "Compressive sensing pattern matching techniques for synthesizing planar sparse arrays," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4577-4587, 2013.        Google Scholar

23. Carlin, M., G. Oliveri, and A. Massa, "Hybrid BCS-deterministic approach for sparse concentric ring isophoric arrays," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 378-383, 2015.        Google Scholar

24. Yan, F., P. Yang, F. Yang, and T. Dong, "Synthesis of planar sparse arrays by perturbed compressive sampling framework," IET Microwav. Antennas Propag., Vol. 10, 1146-1153, 2016.        Google Scholar

25. Yan, F., P. Yang, F. Yang, et al. "An alternating iterative algorithm for the synthesis of complex-excitation and pattern reconfigurable planar sparse array," Signal Process., Vol. 135, 179-187, 2017.        Google Scholar

26. Yan, F., P. Yang, F. Yang, et al. "Synthesis of pattern reconfigurable sparse arrays with multiple measurement vectors FOCUSS method," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 602-611, 2017.        Google Scholar

27. Prisco, G. and M. D'Urso, "Maximally sparse, steerable, and nonsuperdirective array antennas via convex optimizations," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 3840-3849, 2016.        Google Scholar

28. Zhao, X., Q. Yang, and Y. Zhang, "Compressed sensing approach for pattern synthesis of maximally sparse non-uniform linear array," IET Microwav. Antennas Propag., Vol. 8, 301-307, 2014.        Google Scholar

29. D'Urso, M., G. Prisco, and R. M. Tumolo, "Maximally sparse, steerable, and nonsuperdirective array antennas via convex optimizations," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 3840-3849, 2016.        Google Scholar

30. Zhao, X., Q. Yang, and Y. Zhang, "A hybrid method for the optimal synthesis of 3-D patterns of sparse concentric ring arrays," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 515-524, 2016.        Google Scholar

31. Pinchera, D., M. D. Migliore, F. Schettino, M. Lucido, and G. Panariello, "An effective compressed-sensing inspired deterministic algorithm for sparse array synthesis," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 149-159, 2018.        Google Scholar

32. Pinchera, D., M. D. Migliore, and G. Panariello, "Synthesis of large sparse arrays using IDEA (In ating-De ating Exploration Algorithm)," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4658-4668, 2018.        Google Scholar

33. Yang, F., Y. Ma, W. Long, L. Sun, Y. Chen, S. Qu, and S. Yang, "Synthesis of irregular phased arrays subject to constraint on directivity via convex optimization," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 4235-4240, 2021.        Google Scholar

34. Yang, F., S. Yang, Y. Chen, S. Qu, and J. Hu, "Synthesis of sparse antenna arrays subject to constraint on directivity via iterative convex optimization," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 8, 1498-1502, 2021.        Google Scholar

35. Eldar, Y. C. and G. Kutyniok, Compressed Sensing: Theory and Applications, Cambridge Univ. Press, 2012.

36. Fang, J., J. Li, Y. Shen, H. Li, and S. Li, "Super-resolution compressed sensing: An iterative reweighted algorithm for joint parameter learning and sparse signal recovery," IEEE Signal Process. Lett., Vol. 21, No. 6, 761-765, 2014.        Google Scholar

37. Fang, J., F. Wang, Y. Shen, H. Li, and R. Blum, "Super-resolution compressed sensing for line spectral estimation: An iterative reweighted approach," IEEE Trans Signal Process., Vol. 64, No. 18, 4649-4662, 2016.        Google Scholar

38. Zhao, X., Q. Yang, and Y. Zhang, "Synthesis of sparse planar arrays using off-grid CS," Proc. IEEE Int. Symp. Antennas Propag., Xi'an, China, Oct. 2019.        Google Scholar

39. Wipf, D. and S. Nagarajan, "Iterative reweighted l1 and l2 methods for finding sparse solutions," IEEE J. Sel. Topics Signal Process., Vol. 4, No. 2, 317-329, 2010.        Google Scholar

40. Chartrand, R. and W. Yin, "Iteratively reweighted algorithms for compressive sensing," Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 3869-3872, Mar./Apr. 2008.        Google Scholar

41. Zhang, X., Z. He, B. Liao, X. Zhang, and W. Peng, "Pattern synthesis for arbitrary arrays via weight vector orthogonal decomposition," IEEE Trans. Signal Process., Vol. 66, No. 5, 1286-1299, 2018.        Google Scholar

42. Eldar, Y. C., "Generalized SURE for exponential families: Applications to regularization," IEEE Trans. Sig. Proc., Vol. 57, No. 2, 471-481, 2009.        Google Scholar

43. Tropp, J. A. and S. J. Wright, "Computational methods for sparse solution of linear inverse problems," Porc. IEEE, Vol. 98, No. 6, 948-958, 2010.        Google Scholar

44. Gu, P., G. Wang, Z. Hong, and R. Chen, "An efficient approach for the synthesis of large sparse planar array," IEEE Trans. Antennas Propag., Vol. 67, No. 12, 7320-7330, 2019.        Google Scholar