Vol. 125
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-10-24
A Mode Switchable Ferrite Composite Right/Left Handed Microwave Coupler
By
Progress In Electromagnetics Research C, Vol. 125, 201-216, 2022
Abstract
In this paper, novel mode switchable microwave coupled line couplers on ferrite substrates are presented. The couplers are realized in Composite Right/Left Handedcoplanar waveguide configurations. Two different types of mode switchable couplers are proposed. The first one can switch the power from the backward coupling port to the through port. The second one can switch the power from the backward coupling port to both the through and forward coupling ports. In both cases, the mode switching is achieved by varying the applied DC magnetic bias. The theoretical analysis of the switching mechanism has been carried out based on the general coupled mode approach. The analysis is then verified numerically and experimentally. The measurement results confirm the switching functionalities of the fabricated couplers with better than 10 dB isolation between the switched signals. Moreover, these novel mode switchable couplers are compact and require very low external DC magnetic bias due to their CPW configurations. These new proposed switrches can be applied in the smart microwave compoennts in different radar/communication application.
Citation
Mahmoud Abdalla, and Zhirun Hu, "A Mode Switchable Ferrite Composite Right/Left Handed Microwave Coupler," Progress In Electromagnetics Research C, Vol. 125, 201-216, 2022.
doi:10.2528/PIERC22092706
References

1. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 2702-2712, 2002.

2. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Transactions on Antennas and Propagation, Vol. 52, 1159-1166, 2004.

3. Caloz, C. and T. Itoh, Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications, John Wiey & Sons, New Jersey, 2006.

4. Caloz, C., "Metamaterial dispersion engineering concepts and applications," Proceedings of the IEEE, Vol. 99, No. 10, 1711-1719, 2011.

5. Liu, C. and W. Menzel, "Broadband via-free microstrip balun using metamaterial transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 7, 437-439, 2008.

6. Sarkar, A., D. A. Pham, and S. Lim, "Tunable higher order mode-based dual-beam CRLH microstrip leaky-wave antenna for V-band backward-broadside-forward radiation coverage," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 6912-6922, 2020.

7. Mao, S.-G., M.-S. Wu, Y.-Z. Chueh, and C. H. Chen, "Modeling of symmetric composite right/left-handed coplanar waveguides with applications to compact bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 3460-3466, 2005.

8. Gao, J. and L. Zhu, "Characterization of infinite- and finite-extent coplanar waveguide metamaterials with varied left- and right-handed passbands," IEEE Microwave and Wireless Components Letters, Vol. 15, 805-807, 2005.

9. Chiu, S.-C., C.-P. Lai, and S.-Y. Chen, "Compact CRLH CPW antennas using novel termination circuits for dual-band operation at zeroth-order series and shunt resonances," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1071-1080, 2012.

10. Chi, P.-L. and Y.-S. Shih, "Compact and bandwidth-enhanced zeroth-order resonant antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 285-288, 2014.

11. Elsheikh, M. A. G., N. Y. Ammar, and A. M. E. Safwat, "Analysis and design guidelines for wideband CRLH SRR-loaded coplanar waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 7, 2562-2570, 2020.

12. El Atrash, M., M. A. Abdalla, and H. M. Elhennawy, "A compact highly efficient Π-section CRLH antenna loaded with textile AMC for wireless body area network applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 648-657, Feb. 202.

13. Vélez, P., M. Durán-Sindreu, A. Fernández-Prieto, J. Bonache, F. Medina, and F. Martı, "Compact dual-band differential power splitter with common-mode suppression and filtering capability based on differential-mode composite right/left-handed transmission-line metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 536-539, 2014.

14. Liu, F.-X. and J.-C. Lee, "A dual-mode power divider with embedded meta-materials and additional grounded resistors," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 8, 3607-3615, 2021.

15. Huang, T., L. Feng, L. Geng, H. Liu, S. Y. Zheng, S. Ye, L. Zhang, and H. Xu, "Compact dual-band Wilkinson power divider design using via-free D-CRLH resonators for Beidou navigation satellite system," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 1, 65-69, 2021.

16. Liu, F.-X., Y. Wang, S.-P. Zhang, and J.-C. Lee, "Design of compact tri-band Gysel power divider with zero-degree composite right-/left-hand transmission lines," IEEE Access, Vol. 7, 34964-34972, 2019.

17. Ren, X., K. Song, M. Fan, Y. Zhu, and B. Hu, "Compact dual-band Gysel power divider based on composite right-and left-handed transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 2, 82-84, 2014.

18. Chi, P.-L. and T.-Y. Chen, "Dual-band ring coupler based on the composite right/left-handed folded substrate-integrated waveguide," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 5, 330-332, 2014.

19. Chang, L. and T.-G. Ma, "Dual-mode branch-line/rat-race coupler using composite right-/left-handed lines," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 5, 449-451, 2017.

20. Abdalla, M. A., M. A. Fouad, H. A. Elregeily, and A. A. Mitkees, "Wideband negative permittivity metamaterial for size reduction of stopband filter in antenna applications," Progress In Electromagnetics Research C, Vol. 25, 55-66, 2011.

21. Mohan, M. P., A. Alphones, and M. F. Karim, "Triple band filter based on double periodic CRLH resonator," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 3, 212-214, 2018.

22. Song, Y., P. Wen, H. Liu, Y. Wang, and L. Geng, "Design of compact balanced-to-balanced diplexer using dual-mode CRLH resonator for RFID and 5G applications," IEEE Journal of Radio Frequency Identification, Vol. 3, No. 3, 143-148, 2019.

23. Song, Y., H. Liu, W. Zhao, P. Wen, and Z. Wang, "Compact balanced dual-band bandpass filter with high common-mode suppression using planar via-free CRLH resonator," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 11, 996-998, 2018.

24. Shen, G., W. Che, Q. Xue, and W. Yang, "Characteristics of dual composite right/left-handed unit cell and its applications to bandpass filter design," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 65, No. 6, 719-723, 2017.

25. Shen, G., W. Che, Q. Xue, and W. Feng, "Novel design of miniaturized filtering power dividers using dual-composite right-/left-handed resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 12, 5260-5271, 2018.

26. Guan, X., H. Su, H. Liu, P. Wen, W. Liu, P. Gui, and B. Ren, "Miniaturized high temperature superconducting bandpass filter based on D-CRLH resonators," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 5, 1-4, 2019.

27. Wang, Z., Y. Ning, and Y. Dong, "Hybrid metamaterial-TL based, low-profile, dual-polarized omnidirectional antenna for 5G indoor application," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2561-2570, 2021.

28. Wang, Z., T. Liang, and Y. Dong, "Composite right-/left-handed-based, compact, low-profile, and multifunctional antennas for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6302-6311, 2021.

29. Huang, T., L. Feng, L. Geng, H. Liu, S. Y. Zheng, S. Ye, L. Zhang, and H. Xu, "Compact dual-band Wilkinson power divider design using via-free D-CRLH resonators for Beidou navigation satellite system," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 1, 65-69, 2021.

30. Sun, Q., Y.-L. Ban, Y.-X. Che, and Z. Nie, "Coexistence-mode CRLH SIW transmission line and its application for longitudinal miniaturized butler matrix and multibeam array antenna," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, 7593-7603, 2021.

31. Wang, Z., Y. Dong, and T. Itoh, "Miniaturized wideband CP antenna based on metaresonator and CRLH-TLs for 5G new radio applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 74-83, 2020.

32. Xu, H.-X., G.-M. Wang, X. Chen, and T.-P. Li, "Broadband balun using fully artificial fractal-shaped composite right/left handed transmission line," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 1, 16-18, 2012.

33. Xu, H.-X., G.-M.Wang, M.-Q. Qi, C.-X. Zhang, J.-G. Liang, J.-Q. Gong, and Y.-C. Zhou, "Analysis and design of two-dimensional resonant-type composite right left handed transmission lines with compact gain-enhanced resonant antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 735-747, 2013.

34. Koshiji, K. and E. Shu, "Circulators using coplanar waveguide," Electronics Letters, Vol. 22, No. 19, 1000-1002, 1986.

35. Bayard, B., D. Vincent, C. R. Simovski, and G. Noyel, "Electromagnetic study of a ferrite coplanar isolator suitable for integration," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 7, 1809-1814, 2003.

36. Joseph, S., R. Lebourgeois, Y. Huang, L. Roussel, and A. Schuchinsky, "Low-loss hexaferrite self-biased microstrip and CPW circulators," Proc. in IEEE 2019 13rd Int. Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), X-372, 2019.

37. Ueda, T. and M. Tsutsumi, "Nonreciprocal left-handed transmission characteristics of microstrip lines on ferrite substrate," IET Microwaves, Antennas & Propagation, Vol. 1, 349-354, 2007.

38. Ueda, T. and M. Tsutsumi, "Left-handed transmission characteristics of ferrite microstrip lines without series capacitive loading," IEICE Transactions on Electronics, Vol. E89-C, 1318-1323, 2006.

39. Abdalla, M. A. and Z. Hu, "On the study of CWP dual band left handed propagation with reciprocal and nonreciprocal characteristics over ferrite substrates," 2007 IEEE Antennas and Propagation Society International Symposium, 2578-2581, IEEE, 2007.

40. Abdalla, M. A. and Z. Hu, "Nonreciprocal left handed coplanar waveguide over ferrite substrate with only shunt inductive load," Microwave and Optical Technology Letters, Vol. 49, 2810-2814, 2007.

41. Karimian, S., M. Abdalla, and Z. Hu, "Tunable metamaterial ferrite stepped impedance resonator (SIR)," Progress In Electromagnetics Research Symposium Proceedings, 165-168, Xi'an, China, Mar. 22-26, 2010.

42. Abdalla, M. A. and Z. Hu, "Compact metamaterial coplanar waveguide ferrite tunable resonator," IET Microwaves, Antennas & Propagation, Vol. 10, No. 4, 406-412, 2016.

43. Abdalla, M. A. and Z. Hu, "Multi-band functional tunable LH impedance transformer," Journal of Electromagnetic Wave and Applications, Vol. 23, 39-47, 2009.

44. Abdalla, M. A. and Z. Hu, "Compact tunable left handed ferrite transformer," International Journal of Infrared and Millimeter Waves, Vol. 30, No. 8, 813-825, 2009.

45. Abdalla, M. and Z. Hu, "Ferrite tunable metamaterial phase shifter," 2010 IEEE AP-S International Antenna and Propagation Symposium Digest, 1-4, Toronto, Cananda, 2010.

46. Ueda, T., K. Ninomiya, K. Yoshida, and T. Itoh, "Design of dispersion-free phase-shifting non-reciprocity in composite right/left handed metamaterials," 2016 IEEE MTT-S Int. Microwave Symposium (IMS), 1-4, 2016.

47. Kodera, T. and C. Caloz, "Integrated leaky-wave antenna-duplexer/diplexer using CRLH uniform ferrite-loaded open waveguide," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2508-2514, 2010.

48. Kodera, T., D. L. Sounas, and C. Caloz, "Tunable magnet-less non-reciprocal metamaterial (MNM) and its application to an isolator," 2012 Asia-Pacific Microwave Conference Proceedings (APMC), 73-75, 2012.

49. Abdalla, M. and Z. Hu, "Compact novel CPW ferrite coupled line circulator with left-handed power divider/combiner," 2011 European Microwave Week, EuMW 2011, 794-797, Manchester, UK, Oct. 9-14, 2011.

50. Sajin, G., S. Simion, F. Craciunoiu, A.-C. Bunea, A. Dinescu, and A. A. Muller, "Ferrite supported steerable antenna on metamaterial CRLH transmission line," 40th European Microwave Conference (EuMC), 449-452, 2010.

51. Abdalla, M. and Z. Hu, "Compact and tunable metamaterial antenna for multi-band wireless communication applications," 2011 IEEE AP-S International Antennas and Propagation Symposium Digest, 2951-2953, Spokane, USA, Jul. 2011.

52. Porokhnyuk, A., T. Ueda, Y. Kado, and T. Itoh, "Design of nonreciprocal CRLH metamaterial for non-squinting leaky-wave antenna," 2013 IEEE MTT-S International Microwave Symposium Digest (IMS), 1-3, 2013.

53. Kodera, T., D. L. Sounas, and C. Caloz, "Nonreciprocal magnetless CRLH leaky-wave antenna based on a ring metamaterial structure," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1551-1554, 2011.

54. Sajin, G., I. A. Mocanu, F. Craciunoiu, and M. Carp, "MM-wave left-handed transmission line antenna on anisotropic substrate," 43rd European Microwave Conference (EuMC), 668-671, 2013.

55. Tsutsumi, M. and K. Okubo, "Effect of stubs on ferrite microstrip line magnetized to wave propagation," APMC 2009, Asia Pacific Microwave Conference, 1234-1237, 2009.

56. Tsutsumi, M. and K. Okubo, "On the left handed ferrite coupled line," EMTS Int. URSI Electromagnetic Theory Symposium Digest, 1-3, Ottawa, Canada, 2007.

57. Abdalla, M. A. and Z. Hu, "Compact tunable single and dual mode ferrite left-handed coplanar waveguide coupled line couplers," IET Microwaves, Antennas & Propagation, Vol. 3, No. 4, 695-702, 2009.

58. Abdalla, M. A. and Z. Hu, "Composite right/left-handed coplanar waveguide ferrite forward coupled-line coupler," IET Microwaves, Antennas & Propagation, Vol. 9, No. 10, 1104-1111, 2015.

59. Abdalla, M. A. and Z. Hu, "Reconfigurable/tunable dual band/dual mode ferrite composite right/left-handed CPW coupled-line coupler," Journal of Instrumentation, Vol. 12, No. 9, P09009, 2017.

60. Abdalla, M. A. and Z. Hu, "Tunable characteristics of ferrite composite right/left handed coplanar waveguide coupled line coupler --- Measurement and experimental verification," AEU-International Journal of Electronics and Communications, Vol. 96, 113-121, 2018.

61. Nguyen, H. V. and C. Caloz, "Generalized coupled mode approach of metamaterial CLCs: Coupling theory, phenomenological explanation, and experimental demonstration," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 1029-1039, May 2007.

62. Pozar, D. M., Microwave Engineering, John Wiey & Sons, New York, 1998.

63. Greenhouse, H. M., "Design of planar rectangular microelectronic inductors," IEEE Transactions on Parts, Hybrids and Packaging, Vol. 10, 101-109, Jun. 1974.

64. Gupta, K. C., R. Garg, I. Bahl, and P. Bahartia, Microstrip Lines and Slotlines, 2nd Ed., Artech House, London, 1996.

65. Aharni, A., "Demagnetizing factor for rectangular ferromagnetic prisms," Appl. Phys. J., Vol. 83, 3432-3434, Mar. 1998.