Vol. 108
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-11-20
Coplanar Series-Fed Spiral Antenna Arrays for Enlarged Axial Ratio Bandwidth
By
Progress In Electromagnetics Research Letters, Vol. 108, 1-8, 2023
Abstract
We study two array antennas to expand a 3 dB axial ratio bandwidth. Each array is located at a quarter wavelength above the ground plane and analyzed using the moment method. First, we use paired spiral elements fed by balanced parallel lines to avoid unwanted radiation from the feedline. It is found that the antenna shows an axial ratio bandwidth of 30%. Next, the elements are separated and fed by a single feedline to simplify the feed system. It is revealed that the antenna can radiate a circularly polarized wave under a feedline radiation of less than -16 dB. The frequency responses show that an axial ratio < 3 dB and VSWR < 2 are obtained in a bandwidth of 21%, where the gain is more than 13.3 dBi. The simulated results are verified with experimental ones.
Citation
Kazuhide Hirose Yuki Tamura Masaki Tsugane Hisamatsu Nakano , "Coplanar Series-Fed Spiral Antenna Arrays for Enlarged Axial Ratio Bandwidth," Progress In Electromagnetics Research Letters, Vol. 108, 1-8, 2023.
doi:10.2528/PIERL22100901
http://www.jpier.org/PIERL/pier.php?paper=22100901
References

1. Mishra, G., S. K. Sharma, and J. S. Chieh, "A high gain series-fed circularly polarized traveling-wave antenna at W-band using a new butterfly radiating element," IEEE Trans. Antennas and Propag., Vol. 68, No. 12, 7947-7957, 2020.
doi:10.1109/TAP.2020.3000567

2. Bui, C. D., N. Nguyen-Trong, and T. K. Nguyen, "A planar dual-band and dual-sense circularly polarized microstrip patch leaky-wave antenna," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 12, 2162-2166, 2020.
doi:10.1109/LAWP.2020.3026067

3. Hilario Re, P. D., D. Comite, and S. K. Podilchak, "Single-layer series-fed planar array with controlled aperture distribution for circularly polarized radiation," IEEE Trans. Antennas and Propag., Vol. 68, No. 6, 4973-4978, 2020.
doi:10.1109/TAP.2019.2952001

4. Shen, S. J., C. Fumeaux, Y. Monnai, and W. Withayachumnankul, "Dual circularly polarized series-fed microstrip patch array with coplanar proximity coupling," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1500-1503, 2017.

5. Hirose, K., Y. Kikkawa, and H. Nakano, "Dual-loop arrays fed by coplanar parallel lines for wideband circular polarization," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 4, 478-482, 2021.
doi:10.1109/LAWP.2021.3054587

6. Hirose, K., M. Nakatsu, and H. Nakano, "A loop antenna with enlarged bandwidth of circular polarization --- Its application in a comb-line antenna," Progress In Electromagnetics Reseach, Vol. 105, 175-184, 2020.
doi:10.2528/PIERC20071902

7. Harrington, R. F., Fields Computation by Moment Methods, Macmillan, New York, NY, USA, 1968.

8. Hirose, K., K. Obuse, Y. Uchikawa, and H. Nakano, "Low-profile circularly polarized radiation elements --- Loops with balanced and unbalanced feeds," IEEE AP-S Int. Symp., 1-4, San Diego, USA, 2008.

9. Nakano, H., T. Oka, K. Hirose, and J. Yamauchi, "Analysis and measurements for improved crank-line antennas," IEEE Trans. Antennas and Propag., Vol. 45, No. 7, 1166-1172, 1997.
doi:10.1109/8.596910

10. Kraus, J. D., Antennas, 2nd Ed., MacGraw-Hill, New York, NY, USA, 1988.

11. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Peregrinus, Stevenage, UK, 1989.

12. Cao, Y., S. Yan, J. Li, and J. Chen, "A pillbox based dual circularly-polarized millimeter-wave multi-beam antenna for future vehicular radar application," IEEE Trans. Vehicular Technology, Vol. 71, No. 7, 7095-7103, 2022.
doi:10.1109/TVT.2022.3162299

13. Nguyentrong, N., S. J. Chen, and C. Fumeaux, "High-gain dual-band dual-sense circularly polarized spiral series-fed patch antenna," IEEE Open J. of Antennas and Propag., Vol. 3, 343-352, 2022.
doi:10.1109/OJAP.2022.3161129