1. Bernety, H. M., B. Zakeri, and R. Gholami, 2013 21st Iranian Conference on Electrical Engineering (ICEE), 1-4, 2013, doi:10.1109/iraniancee.2013.65996. Google Scholar
2. Pandey, S. K., G. P. Pandey, and P. M. Sarun, "Fractal based triple band high gain monopole antenna," Frequenz, Vol. 71, No. 11-12, 2017, doi:10.1515/freq-2016-0208.
doi:10.1515/freq-2016-0208 Google Scholar
3. Samsuzzaman, M. and M. T. Islam, "A semicircular shaped super wideband patch antenna with high bandwidth dimension ratio," Microwave and Optical Technology Letters, Vol. 57, No. 2, 445-452, 2014, doi:10.1002/mop.28872.
doi:10.1002/mop.28872 Google Scholar
4. Ellis, M. S., Z. Zhao, J.Wu, Z. Nie, and Q. H. Liu, "Small planar monopole ultra-wideband antenna with reduced ground plane effect," IET Microw Antennas Propag., Vol. 9, No. 10, 1028-1034, 2015.
doi:10.1049/iet-map.2014.0538 Google Scholar
5. Aziz, S. Z. and M. F. Jamlos, "Compact super wideband patch antenna design using diversities of reactive loaded technique," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2811-2814, 2016, doi:10.1002/mop.30152.
doi:10.1002/mop.30152 Google Scholar
6. Nadeem, M., A. N. Khan, A. Ali Khan, and T. Azim, "Low profile CPW fed slotted planar inverted cone ultra-wide band antenna for WBAN applications," Microwave and Optical Technology Letters, Vol. 60, No. 4, 870-876, 2018, doi:10.1002/mop.31070.
doi:10.1002/mop.31070 Google Scholar
7. Singhal, S. and A. K. Singh, "CPW-fed hexagonal Sierpinski super wideband fractal antenna," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1701-1707, 2016, doi:10.1049/iet-map.2016.0154.
doi:10.1049/iet-map.2016.0154 Google Scholar
8. Addaci, R. and T. Fortaki, "Miniature low profile UWB antenna: New techniques for bandwidth enhancement and radiation pattern stability," Microwave and Optical Technology Letters, Vol. 58, No. 8, 1808-1813, 2016, doi:10.1002/mop.29907.
doi:10.1002/mop.29907 Google Scholar
9. Hakimi, S., S. K. A. Rahim, M. Abedian, S. M. Noghabaei, and M. Khalily, "CPW-fed transparent antenna for extended ultrawideband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1251-1254, 2014, doi:10.1109/lawp.2014.2333091.
doi:10.1109/LAWP.2014.2333091 Google Scholar
10. Hendevari, M. S., A. Pourziad, and S. Nikmehr, "A novel ultra-wideband monopole antenna for ground penetrating radar application," Microwave and Optical Technology Letters, Vol. 60, No. 9, 2252-2256, 2018, doi:10.1002/mop.31335.
doi:10.1002/mop.31335 Google Scholar
11. Gorai, A., A. Karmakar, M. Pal, and R. Ghatak, "A CPW-fed propeller shaped monopole antenna with super wideband characteristics," Progress In Electromagnetics Research C, Vol. 45, 125-135, 2013.
doi:10.2528/PIERC13082805 Google Scholar
12. Nikolaou, S. and M. A. B. Abbasi, "Design and development of a compact UWB monopole antenna with easily-controllable return loss," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2063-2067, 2017, doi:10.1109/tap.2017.2670322.
doi:10.1109/TAP.2017.2670322 Google Scholar
13. Singhal, S. and A. K. Singh, "CPW-fed Phi-shaped monopole antenna for super-wideband applications," Progress In Electromagnetics Research C, Vol. 64, 105-116, 2016.
doi:10.2528/PIERC16022401 Google Scholar
14. Omar, A. A., O. Abu Safia, and M. Nedil, "UWB coplanar waveguide-fed coplanar strips rectangular spiral antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 7, e21115, 2017, doi:10.1002/mmce.21115.
doi:10.1002/mmce.21115 Google Scholar
15. Rahman, M. N., M. T. Islam, M. Z. Mahmud, and M. Samsuzzaman, "Compact microstrip patch antenna proclaiming super wideband characteristics," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2563-2570, 2017, doi:10.1002/mop.30770.
doi:10.1002/mop.30770 Google Scholar
16. Hayouni, M., F. Choubani, T. H. Vuong, and J. David, "Main effects ensured by symmetric circular slots etched on the radiating patch of a compact monopole antenna on the impedance bandwidth and radiation patterns," Wireless Pers. Commun., Vol. 95, No. 4, 4243-4256, 2017.
doi:10.1007/s11277-017-4077-7 Google Scholar
17. Dong, Y., W. Hong, L. Liu, Y. Zhang, and Z. Kuai, "Performance analysis of a printed super-wideband antenna," Microwave and Optical Technology Letters, Vol. 51, No. 4, 949-956, 2009, doi:10.1002/mop.24222.
doi:10.1002/mop.24222 Google Scholar
18. Wu, B. J. and Q. Y. Feng, "A novel compact broadband antenna for LTE/WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 59, 129-135, 2016.
doi:10.2528/PIERL16030403 Google Scholar
19. Liu, J., S. Zhong, and K. P. Esselle, "A printed elliptical monopole antenna with modified feeding structure for bandwidth enhancement," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 667-670, 2011, doi:10.1109/tap.2010.2096398.
doi:10.1109/TAP.2010.2096398 Google Scholar
20. Tiwari, R. N., P. Singh, and B. K. Kanaujia, "Small-size scarecrow-shaped CPW and microstrip-line-fed UWB antennas," Journal of Computational Electronics, Vol. 17, No. 3, 1047-1055, 2018, doi:10.1007/s10825-018-1182-0.
doi:10.1007/s10825-018-1182-0 Google Scholar
21. Liu, J., K. P. Esselle, S. G. Hay, and S. Zhong, "Achieving ratio bandwidth of 25 : 1 from a printed antenna using a tapered semi-ring feed," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1333-1336, 2011, doi:10.1109/lawp.2011.2177800. Google Scholar
22. Srivastava, K., A. Kumar, B. K. Kanaujia, S. Dwari, and S. Kumar, "Multiband integrated wideband antenna for bluetooth/WLAN applications," AEU --- International Journal of Electronics and Communications, Vol. 89, 77-84, 2018, doi: 10.1016/j.aeue.2018.03.027.
doi:10.1016/j.aeue.2018.03.027 Google Scholar
23. Bozdag, G. and A. Kustepeli, "Wideband planar monopole antennas for GPS/WLAN/WiMAX/UWB and X-band applications," Microwave and Optical Technology Letters, Vol. 58, No. 2, 257-261, 2015, doi:10.1002/mop.29550.
doi:10.1002/mop.29550 Google Scholar
24. Yang, L., D. Zhang, X. Zhu, and Y. Li, "Design of a super wide band antenna and measure of ambient RF density in urban area," IEEE Access, Vol. 8, 767-774, 2020, doi:10.1109/access.2019.2962141.
doi:10.1109/ACCESS.2019.2962141 Google Scholar
25. Ramanuajam, P., C. Arumugam, R. Venkatesan, and M. Ponusamy, "Design of compact patch antenna with enhanced gain and bandwidth for 5Gmm-wave applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 12, 1455-1461, 2020, doi:10.1049/iet-map.2019.0891.
doi:10.1049/iet-map.2019.0891 Google Scholar
26. Elhabchi, M., M. N. Srifi, and R. Touahni, "A novel CPW-fed semi-circular triangular antenna with modified ground plane for super ultra-wide band (UWB) applications," 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 1-5, 2018, doi:10.1109/isaect.2018.8618857. Google Scholar
27. Malik, R., P. Singh, H. Ali, and T. Goel, "A star shaped superwide band fractal antenna for 5G applications," 2018 3rd International Conference for Convergence in Technology (I2CT), 1-6, 2018, doi:10.1109/i2ct.2018.8529404. Google Scholar
28. Okas, P., A. Sharma, G. Das, and R. K. Gangwar, "Elliptical slot loaded partially segmented circular monopole antenna for super wideband application," AEU --- International Journal of Electronics and Communications, Vol. 88, 63-69, 2018, doi: 10.1016/j.aeue.2018.03.004.
doi:10.1016/j.aeue.2018.03.004 Google Scholar
29. Srikar, D. and S. Anuradha, "A compact super wideband antenna for wireless communications," 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-4, 2018, doi:10.1109/icccnt.2018.8494146. Google Scholar
30. Rahman, M., W. T. Khan, and M. Imran, "Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR, CSRR, and DGS," AEU -- International Journal of Electronics and Communications, Vol. 93, 116-122, 2018, doi: 10.1016/j.aeue.2018.06.010.
doi:10.1016/j.aeue.2018.06.010 Google Scholar
31. Mythili, P. and A. Das, "Simple approach to determine resonant frequencies of microstrip antennas," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 145, No. 2, 159-162, 1998.
doi:10.1049/ip-map:19981636 Google Scholar
32. Ray, K. P. and G. Kumar, "Determination of the resonant frequency of microstrip antennas," Microwave and Optical Technology Letters, Vol. 23, No. 2, 114-117, 1999.
doi:10.1002/(SICI)1098-2760(19991020)23:2<114::AID-MOP15>3.0.CO;2-G Google Scholar
33. Sievenpiper, D., "High-impedance electromagnetic surfaces,", Ph.D. Dissertation, UCLA, 1999, Available at www.ee.ucla.edu/labs/photon/thesis/ThesisDan.pdf. Google Scholar
34. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, 2003, doi: 10.1109/TAP.2003.817559.
doi:10.1109/TAP.2003.817559 Google Scholar
35. Shaban, H. F., H. A. Elmikaty, and A. A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patch microstrip antenna," Progress In Electromagnetics Research B, Vol. 10, 55-74, 2008.
doi:10.2528/PIERB08081901 Google Scholar
36. Elsheakh, D. M., H. A. Elsadek, and E. A. Abdallah, "Antenna designs with electromagnetic band gap structures," Metamaterial, 403-473, InTech, Rijeka, Croatia, 2012. Google Scholar
37. Yang, F. and Y. Rahmat Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, Oct. 2003.
doi:10.1109/TAP.2003.817559 Google Scholar
38. Elsheakh, D. N., H. A. Elsadek, E. A. Abdallah, H. Elhenawy, and M. F. Iskander, "Enhancement of microstrip monopole antenna bandwidth by using EBG structures," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 959-962, 2009, doi: 10.1109/LAWP.2009.2030375.
doi:10.1109/LAWP.2009.2030375 Google Scholar