Vol. 108
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-01-09
Quaternion MIMO Millimeter Wave Antenna for 5G Applications
By
Progress In Electromagnetics Research Letters, Vol. 108, 113-121, 2023
Abstract
In order to reduce the multipath fading caused by the reflection of various obstacles in short-distance communication, this paper designs a quaternion MIMO millimeter wave antenna working at 28 GHz. The antenna design adopts an inverted trapezoidal radiation patch and a slotted trapezoidal ground plate structure, so that the S11 of the antenna is lower than -10 dB in the frequency band of 24~32 GHz. By using a 1×2 array structure as the unit of MIMO antenna, the gain of the antenna at 28 GHz is 7.5 dBi. The isolation degree of each port is lower than -25 dB by orthogonal placement of each unit. The performance of the antenna is tested by the physical production test. The actual test results show that the operating bandwidth of the antenna is consistent with the simulation results. The gain at 28 GHz is slightly lower than the simulation results by 0.1 dBi, and the isolation of each port is lower than -18 dB, which is 7 dB away from the simulation results but still meets the requirement of -15 dB for MIMO communication. The measured results show that the antenna can be used in MIMO short-distance communication system.
Citation
Ming-Ming Gao, Jun Wang, Jing Chang Nan, and Niu-Hong Liang, "Quaternion MIMO Millimeter Wave Antenna for 5G Applications," Progress In Electromagnetics Research Letters, Vol. 108, 113-121, 2023.
doi:10.2528/PIERL22101702
References

1. Subitha, D., S. Velmurugan, M. Vanitha Lakshmi, P. Poonkuzhali, T. Yuvaraja, and S. Alemayehu, "Development of Rogers RT/Duroid 5880 substrate-based MIMO antenna array for automotive radar applications," Materials Science and Engineering, Vol. 11, 2022.

2. Khalid, M., X. Qin, Y. X. Sun, et al. "4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, 71, 2020.
doi:10.3390/electronics9010071

3. Pan, Y. M., X. Qin, Y. X. Sun, and S. Y. Zheng, "A simple decoupling method for 5G millimeter-wave MIMO dielectric resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2224-2234, 2019.
doi:10.1109/TAP.2019.2891456

4. Shen, X., Y. Liu, L. Zhao, and G.-L. Huang, "A miniaturized microstrip antenna array at 5G millimeter wave band," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1671-1675, 2019.
doi:10.1109/LAWP.2019.2927460

5. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "Dual-beam antenna for millimeter wave MIMO applications," 2018 IEEE Indian Conference on Antennas and Propogation (InCAP), 1-3, 2018.

6. Khan, J., S. Ullah, U. Ali, F. A. Tahir, I. Peter, and L. Matekovits, "Design of a millimeter-wave MIMO antenna array for 5G communication terminals," Sensors, Vol. 22, 2768, 2022.
doi:10.3390/s22072768

7. Manan, A., S. I. Naqvi, M. A. Azam, Y. Amin, J. Loo, and H. Tenhunen, "MIMO antenna array for mm-wave 5G smart devices," 22nd International Multitopic Conference (INMIC), 1-5, 2019.

8. Rajkumar, S., A. Anto Amala, and K. T. Selvan, "Isolation improvement of UWB MIMO antenna utilising molecule fractal structure," Electronics Letters, Vol. 55, No. 10, 576-579, 2019.
doi:10.1049/el.2019.0592

9. Chithradevi, R. and B. S. Sreeja, "A compat UWB MIMO antenna with high isolation and low correlation for wireless applications," 2017 IEEE International Conference on Antenna Innovations & Modern Technolo gies for Ground, Aircraft and Satellite Applications, 1-4, 2017.

10. Manage, P. S., U. Naik, S. Kareemulla, and V. Rayar, "Dual band notched UWB-MIMO antenna incorporating CSRR for WLAN and X band applications," 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 149-152, 2020.
doi:10.1109/ICSSIT48917.2020.9214113

11. Banerjee, J., R. Ghatak, and A. Karmakar, "A compact planar UWB MIMO diversity antenna with Hilbert fractal neutralization line for isolation improvement and dual band notch characteristics," 2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT), 1-6, 2018.

12. Liu, Y., X. Yang, Y. Jia, and Y. J. Guo, "A low correlation and mutual coupling MIMO antenna," IEEE Access, Vol. 7, 127384-127392, 2019.
doi:10.1109/ACCESS.2019.2939270

13. Zhou, X., H. Zhai, L. Xi, Z. Wei, Z. Ma, and L. Zheng, "A low-profile four-element MIMO antenna array with new decoupling structures," Microw. Opt. Technol. Lett., Vol. 60, 2511-2516, 2018.

14. Chang, L., Y. Yu, K. Wei, and H. Wang, "Orthogonally polarized dual antenna pair with high isolation and balanced high performance for 5G MIMO smartphone," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3487-3495, 2020.
doi:10.1109/TAP.2020.2963918

15. Sufian, M. A., N. Hussain, H. Askari, S. G. Park, K. S. Shin, and N. Kim, "Isolation enhancement of a metasurface-based MIMO antenna using slots and shorting pins," IEEE Access, Vol. 9, 73533-73543, 2021.
doi:10.1109/ACCESS.2021.3079965