Vol. 99
Latest Volume
All Volumes
PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-03-20
An Analytical Approach for Pulse Compression Favorable Digitized Frequency Modulated Thermal Wave Imaging Technique for the Quantitative Estimation of Breast Cancer
By
Progress In Electromagnetics Research B, Vol. 99, 63-81, 2023
Abstract
Among several noninvasive diagnostic modalities used for identifying and assessing breast cancer, a recently proposed digitized frequency-modulated thermal wave imaging (DFMTWI) has emerged as a widely applied active thermographic technique. DFMTWI has demonstrated its capabilities for early diagnosis and quantitative evaluation of breast cancer by exhibiting better pulse compression properties. This approach delivers better depth resolution and sensitivity than standard thermographic techniques. The current research illustrates the novel analytical model for the pulse compression favorable DFMTWI technique for the quantitative estimation of breast cancer. Using Green's function approach, an analytical model has been solved by considering the multilayer Pennes bioheat transfer equation with adiabatic boundary conditions and a constant initial condition. The conventional thermographic techniques (such as Lock-in Thermography (LT) and Pulse Thermography (PT)) are also solved with a similar approach as followed for DFMTWI. The results obtained for the proposed DFMTWI and the conventional LT and PT thermographic techniques are then compared and validated with the numerical results obtained from the numerical simulation considering the correlation coefficient as a figure of merit for early-stage breast cancer diagnosis.
Citation
Anshul Sharma Vanita Arora Ravibabu Mulaveesala , "An Analytical Approach for Pulse Compression Favorable Digitized Frequency Modulated Thermal Wave Imaging Technique for the Quantitative Estimation of Breast Cancer," Progress In Electromagnetics Research B, Vol. 99, 63-81, 2023.
doi:10.2528/PIERB22102701
http://www.jpier.org/PIERB/pier.php?paper=22102701
References