1. Bray, F., J. Ferlay, I. Soerjomataram, et al. "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," CA Cancer J. Clin., Vol. 68, 394-424, 2018.
doi:10.3322/caac.21492 Google Scholar
2. Ferlay, J., M. Colombet, I. Soerjomataram, C. Mathers, D. M. Parkin, M. Pineros, A. Znaor, and F. Bray, "Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods," International Journal of Cancer, Vol. 144, No. 8, 1941-1953, 2019.
doi:10.1002/ijc.31937 Google Scholar
3. Riggio, A. I., K. E. Varley, and A. L. Welm, "The lingering mysteries of metastatic recurrence in breast cancer," British Journal of Cancer, Vol. 124, No. 1, 13-26, 2021.
doi:10.1038/s41416-020-01161-4 Google Scholar
4. Hassett, M. J., M. R. Somereld, E. R. Baker, F. Cardoso, K. J. Kansal, D. C. Kwait, and S. H. Giordano, "Management of male breast cancer: ASCO guideline," Journal of Clinical Oncology, Vol. 38, No. 16, 1849-1863, 2020.
doi:10.1200/JCO.19.03120 Google Scholar
5. Hortobagyi, G. N., J. de la Garza Salazar, K. Pritchard, D. Amadori, R. Haidinger, and C. A. Hudis, "ABREAST investigators, the global breast cancer burden: Variations in epidemiology and survival," Clinical Breast Cancer, Vol. 6, No. 5, 391-401, 2005.
doi:10.3816/CBC.2005.n.043 Google Scholar
6. He, Z., Z. Chen, M. Tan, S. Elingarami, Y. Liu, T. Li, and W. Li, "A review on methods for diagnosis of breast cancer cells and tissues," Cell Proliferation, Vol. 53, No. 7, e12822, 2020.
doi:10.1111/cpr.12822 Google Scholar
7. Harbeck, N., F. Penault-Llorca, J. Cortes, M. Gnant, N. Houssami, P. Poortmans, K. Ruddy, J. Tsang, and F. Cardoso, "Breast cancer (Primer)," Nature Reviews: Disease Primers, Vol. 5, No. 1, 66, 2019.
doi:10.1038/s41572-019-0111-2 Google Scholar
8. Britt, K. L., J. Cuzick, and K. A. Phillips, "Key steps for effective breast cancer prevention," Nature Reviews Cancer, 1-20, 2020. Google Scholar
9. Akram, M., M. Iqbal, M. Daniyal, and A. U. Khan, "Awareness, and current knowledge of breast cancer," Biological Research, Vol. 50, No. 1, 33, 2017.
doi:10.1186/s40659-017-0140-9 Google Scholar
10. Rao, A. P., N. Bokde, and S. Sinha, "Photoacoustic imaging for management of breast cancer: A literature review and future perspectives," Applied Sciences, Vol. 10, No. 3, 767, 2020.
doi:10.3390/app10030767 Google Scholar
11. Zeng, Z., A. Amin, A. Roy, N. E. Pulliam, L. C. Karavites, S. Espino, I. Helenowski, X. Li, Y. Luo, and S. A. Khan, "Preoperative magnetic resonance imaging use and oncologic outcomes in premenopausal breast cancer patients," NPJ Breast Cancer, Vol. 6, No. 1, 1-8, 2020.
doi:10.1038/s41523-019-0144-4 Google Scholar
12. Badiger, S. and J. Moger, "A comparative study of mammography, sonography and infrared thermography in detection of cancer in breast," International Surgery Journal, Vol. 7, No. 6, 1886-1892, 2020.
doi:10.18203/2349-2902.isj20202401 Google Scholar
13. Wang, J., K. J. Chang, C. Y. Chen, K. L. Chien, Y. S. Tsai, Y. M. Wu, and T. T. F. Shih, "Evaluation of the diagnostic performance of infrared imaging of the breast: A preliminary study," Biomedical Engineering Online, Vol. 9, No. 1, 1-14, 2010.
doi:10.1186/1475-925X-9-3 Google Scholar
14. Ng, E. Y. K. and N. M. Sudharsan, "An improved three-dimensional direct numerical modelling and thermal analysis of a female breast with tumour," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 215, No. 1, 25-37, 2001.
doi:10.1243/0954411011533508 Google Scholar
15. Gonzalez, F. J., "Noninvasive estimation of the metabolic heat production of breast tumors using digital infrared imaging," Quantitative InfraRed Thermography Journal, Vol. 8, No. 2, 139-148, 2011.
doi:10.3166/qirt.8.139-148 Google Scholar
16. Maldague, X. and S. Marinetti, "Pulse phase infrared thermography," Journal of Applied Physics, Vol. 79, No. 5, 2694-2698, 1996.
doi:10.1063/1.362662 Google Scholar
17. Maldague, X., Y. Largouct, and J. P. Couturier, "A study of defect depth using neural networks in pulsed phase thermography: Modeling, noise, experiments," Revue Generale de Thermique, Vol. 37, No. 8, 704-717, 1998.
doi:10.1016/S0035-3159(98)80048-2 Google Scholar
18. Vavilov, V. P. and S. Marinetti, "Pulsed phase thermography and fourier-analysis thermal tomography," Russian Journal of Nondestructive Testing, Vol. 35, No. 2, 134-145, 1999. Google Scholar
19. Ibarra-Castanedo, C., N. P. Avdelidis, and X. Maldague, "Qualitative and quantitative assessment of steel plates using pulsed phase thermography," Materials Evaluation, Vol. 63, No. 11, 1128-1133, 2005. Google Scholar
20. Pickering, S. and D. Almond, "Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques," NDT and E International, Vol. 41, No. 7, 501-509, 2008.
doi:10.1016/j.ndteint.2008.05.007 Google Scholar
21. Busse, G., D. Wu, and W. Karpen, "Thermal wave imaging with phase sensitive modulated thermography," Journal of Applied Physics, Vol. 71, No. 8, 3962-3965, 1992.
doi:10.1063/1.351366 Google Scholar
22. Wu, D. and G. Busse, "Lock-in thermography for Nondestructive evaluation of materials," Revue Generale de Thermique, Vol. 37, No. 8, 693-703, 1998.
doi:10.1016/S0035-3159(98)80047-0 Google Scholar
23. Mulaveesala, R. and S. Tuli, "Digitized frequency modulated thermal wave imaging for nondestructive testing," Materials Evaluation, Vol. 63, No. 10, 1046-1050, 2005. Google Scholar
24. Mulaveesala, R., P. Pal, and S. Tuli, "Interface study of bonded wafers by digitized linear frequency modulated thermal wave imaging," Sensors and Actuators A: Physical, Vol. 128, No. 1, 209-216, 2006.
doi:10.1016/j.sna.2006.01.004 Google Scholar
25. Sharma, A., R. Mulaveesala, G. Dua, V. Arora, and N. Kumar, "Digitized frequency modulated thermal wave imaging for detection and estimation of osteoporosis," IEEE Sensors Journal, Vol. 21, No. 13, 14003-14010, 2021.
doi:10.1109/JSEN.2020.3043282 Google Scholar
26. Carslaw, H. S. and J. C. Jaeger, Conduction of Heat in Solids, Oxford Clarendon Press, London, 1959.
27. Ozisik, M. N., Heat Conduction, John Wiley & Sons, 1993.
28. Ozisik, M. N., Boundary Value Problems of Heat Conduction, Courier Corporation, 1989.
29. Pennes, H. H., "Analysis of tissue and arterial blood temperatures in the resting human forearm," Journal of Applied Physiology, Vol. 1, No. 2, 93-122, 1948.
doi:10.1152/jappl.1948.1.2.93 Google Scholar
30. Durkee, Jr., J., P. Antich, and C. Lee, "Exact solutions to the multiregion time-dependent bioheat equation. I: Solution development," Physics in Medicine & Biology, Vol. 35, No. 7, 847, 1990.
doi:10.1088/0031-9155/35/7/004 Google Scholar
31. Durkee, Jr., J., P. Antich, and C. Lee, "Exact solutions to the multiregion time-dependent bioheat equation. II: Numerical evaluation of the solutions," Physics in Medicine & Biology, Vol. 35, No. 7, 869, 1990.
doi:10.1088/0031-9155/35/7/005 Google Scholar
32. Durkee, Jr., J. and P. Antich, "Exact solutions to the multi-region time-dependent bioheat equation with transient heat sources and boundary conditions," Physics in Medicine & Biology, Vol. 36, No. 3, 345, 1991.
doi:10.1088/0031-9155/36/3/004 Google Scholar
33. Sharma, A., R. Mulaveesala, and V. Arora, "Novel analytical approach for estimating thermal diffusivity and effusivity for detection of osteoporosis," IEEE Sensors Journal, Vol. 20, No. 11, 6046-6054, 2020.
doi:10.1109/JSEN.2020.2973233 Google Scholar
34. Sharma, A., R. Mulaveesala, G. Dua, and N. Kumar, "Linear frequency modulated thermal wave imaging for estimation of osteoporosis: An analytical approach," Electronics Letters, Vol. 56, No. 19, 1007-1010, 2020.
doi:10.1049/el.2020.0671 Google Scholar
35. Bagaria, H. and D. Johnson, "Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment," International Journal of Hyperthermia, Vol. 21, No. 1, 57-75, 2005.
doi:10.1080/02656730410001726956 Google Scholar
36. Rodrigues, D., P. Pereira, P. Limao-Vieira, P. Stauffer, and P. F. Maccarini, "Study of the one dimensional and transient bioheat transfer equation: multilayer solution development and applications," International Journal of Heat and Mass Transfer, Vol. 62, 153-162, 2013.
doi:10.1016/j.ijheatmasstransfer.2012.11.082 Google Scholar
37. Sharma, A., G. Dua, V. Arora, N. Kumar, and R. Mulaveesala, "A novel analytical approach for nondestructive testing and evaluation of bone implants using frequency modulated thermal wave imaging," Lecture Notes in Mechanical Engineering, 273-285, 2022.
doi:10.1007/978-981-16-9093-8_22 Google Scholar
38. Ramp, H. O. and E. R. Wingrove, "Principles of pulse compression," IRE Transactions on Military Electronics, Vol. 5, No. 2, 109-116, 1961.
doi:10.1109/IRET-MIL.1961.5008328 Google Scholar
39. Cook, C. E. and J. Paolillo, "A pulse compression predistortion function for efficient sidelobe reduction in a high-power radar," Proceedings of the IEEE, Vol. 52, No. 4, 377-389, 1964.
doi:10.1109/PROC.1964.2927 Google Scholar
40. Mulaveesala, R., V. J. Somayajulu, and S. Pushpraj, "Pulse compression approach to infrared nondestructive characterization," Review of Scientic Instruments, Vol. 79, No. 9, Art. No. 094901, 2008. Google Scholar
41. Mulaveesala, R., J. S. Vaddi, and P. Singh, "Pulse compression approach to infrared nondestructive characterization," Review of Scientic Instruments, Vol. 79, No. 9, 094901, 2008.
doi:10.1063/1.2976673 Google Scholar
42. Sharma, A., G. Dua, and R. Mulaveesala, "Breast cancer detection using frequency modulated thermal wave imaging," Imaging Science Journal, Vol. 67, No. 7, 396-406, 2019.
doi:10.1080/13682199.2019.1679442 Google Scholar
43. Werner, J. and M. Buse, "Temperature proles with respect to inhomogeneity and geometry of the human body," Journal of Applied Physiology, Vol. 65, No. 3, 1110-1118, 1988.
doi:10.1152/jappl.1988.65.3.1110 Google Scholar
44. Williams, L. and R. Leggett, "Reference values for resting blood ow to organs of man," Clinical Physics and Physiological Measurement, Vol. 10, No. 3, 187, 1989.
doi:10.1088/0143-0815/10/3/001 Google Scholar
45. Gonzalez, F. J., "Noninvasive estimation of the metabolic heat production of breast tumors using digital infrared imaging," Quantitative InfraRed Thermography Journal, Vol. 8, No. 2, 139-148, 2011.
doi:10.3166/qirt.8.139-148 Google Scholar