1. Engquist, B. and A. Majda, "Absorbing boundary conditions for numerical simulation of waves," Proc. Natl. Acad. Sci., Vol. 74, 1765-1766, 1977.
doi:10.1073/pnas.74.5.1765 Google Scholar
2. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat., Vol. 23, 377-382, 1981.
doi:10.1109/TEMC.1981.303970 Google Scholar
3. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 1995.
4. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, Oct. 1994, doi: 10.1006/jcph.1994.1159.
doi:10.1006/jcph.1994.1159 Google Scholar
5. Yu, T. B., B. H. Zhou, and B. Chen, "An unsplit formulation of the Berenger's PML absorbing boundary condition for FDTD meshes," IEEE Microw. Wirel. Components Lett., Vol. 13, 348-350, 2003. Google Scholar
6. Abdulkareem, B., J. P. Bérenger, F. Costen, R. Himeno, and H. Yokota, "An operator absorbing boundary condition for the absorption of electromagnetic waves in dispersive media," IEEE Trans. Antennas Propag., Vol. 66, 2147-2150, 2018.
doi:10.1109/TAP.2018.2796386 Google Scholar
7. Chen, Y. and N. Feng, "Learning unsplit-field-based PML for the FDTD method by deep differentiable forest," arXiv:2004.04815, Jun. 16, 2021. [Online]. Available: http://arxiv.org/abs/2004.04815. Google Scholar
8. Tan, E. L., "A leapfrog scheme for complying-divergence implicit finite-difference time-domain method," IEEE Antennas Wirel. Propag. Lett., Vol. 20, 853-857, 2021.
doi:10.1109/LAWP.2021.3065520 Google Scholar
9. Valagiannopoulos, C. A. and N. K. Uzunoglu, "Rigorous analysis of a metallic circular post in a rectangular waveguide with step discontinuity of sidewalls," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 8, 1673-1684, Aug. 2007.
doi:10.1109/TMTT.2007.901597 Google Scholar
10. Sun, Y.-C., H. Ren, K. Yamazaki, et al. "Semi-analytical solutions of seismo-electromagnetic signals arising from the motional induction in 3-D multi-layered media: Part I - Theoretical formulations," Earth, Planets and Space, Vol. 73, No. 1, 1-26, 2021.
doi:10.1186/s40623-020-01327-7 Google Scholar
11. Bérenger, J. P., "An implicit FDTD scheme for the propagation of VLF-LF radio waves in the Earth-ionosphere waveguide," Comptes Rendus Physique, 2014. Google Scholar
12. Samimi, A. and J. J. Simpson, "Introducing a new method for FDTD modeling of electromagnetic wave propagation in magnetized plasma," 2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI 2014 - Proceedings, 158, Nov. 2014. Google Scholar
13. Fang, Y., X. L. Xi, J. M. Wu, J. F. Liu, and Y. R. Pu, "A J-E collocated WLP-FDTD model of wave propagation in isotropic cold plasma," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 7, Pt. 1, 1957-1965, 2016. Google Scholar
14. Pokhrel, S., J. J. Simpson, D. T. Welling, and M. W. Liemohn, "Regional FDTD modeling of GICs during the 2003 `Halloween' solar storm," AGUFM, Vol. 2018, IN33D-0884, Feb. 23, 2021. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2018AGUFMIN33D0884P/abstract. Google Scholar
15. Pokhrel, S., V. Shankar, and J. J. Simpson, "Simplified FDTD model of electromagnetic wave propagation in magnetized plasma," 2018 International Applied Computational Electromagnetics Society Symposium (ACES), IEEE, Denver, CO, USA, May 2018. Google Scholar
16. Valagiannopoulos, C., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137-152, 2007.
doi:10.2528/PIER07052502 Google Scholar
17. Li, M.-K. and W. C. Chew, "A new Sommerfeld-Watson transform in 3D," IEEE Antennas and Propagation Society Symposium, 2004, Vol. 2, IEEE, 2004. Google Scholar
18. Chen, Q., M. Katsurai, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. Antennas Propag., Vol. 46, 1739-1746, 1998.
doi:10.1109/8.736632 Google Scholar
19. Yang, L., Y. Xie, and P. Yu, "Study of bandgap characteristics of 2D magnetoplasma photonic crystal by using M-FDTD method," Microw. Opt. Technol. Lett., Vol. 53, 1778-1784, 2011.
doi:10.1002/mop.26143 Google Scholar
20. Courant, R., K. Friedrichs, and H. Lewy, "On the partial difference equations of mathematical physics," IBM J. Res. Dev., Vol. 11, 215-234, 1967.
doi:10.1147/rd.112.0215 Google Scholar
21. Berenger, J. P., "Improved PML for the FDTD solution of wave-structure interaction problems," IEEE Trans. Antennas Propag., Vol. 45, 466-473, 1997.
doi:10.1109/8.558661 Google Scholar
22. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
23. Rickard, Y. S. and N. K. Georgieva, "Problem-independent enhancement of PML ABC for the FDTD method," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 3002-3006, 2003.
doi:10.1109/TAP.2003.818000 Google Scholar