Vol. 109
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-03-07
A Novel Planar Broadband End-Fire Antenna with High Front-to-Back Ratio
By
Progress In Electromagnetics Research Letters, Vol. 109, 85-92, 2023
Abstract
In this paper, a high front-to-back ratio (FTBR), broad bandwidth planar printing structure, and electromagnetic dipole complementary antenna that generates end-fire radiation pattern is investigated. The antenna consists of a segmented loop, planar electric dipole, and microstrip coupling feed structure, which are printed on the top and bottom surfaces of a dielectric substrate. The segmented loop is equivalent to a magnetic dipole. A high front-to-back ratio is achieved by combining the electric dipole and equivalent magnetic dipole with the same radiation intensity and antiphase. The proposed antenna is fabricated and measured. The measured results show that the proposed antenna achieves an impedance bandwidth of 48.05% (1.66 GHz-2.71 GHz). The largest gain can get to 3.89 dBi, and the maximum front-to-back ratio is 25.4 dB in the frequency band. The measured results are well consistent with simulated ones.
Citation
Yonghao Zhu, Hua Chen, Lan Li, Jifang Zhang, Yan Yan, Mankang Xue, Quan Wang, and Qing Fang, "A Novel Planar Broadband End-Fire Antenna with High Front-to-Back Ratio," Progress In Electromagnetics Research Letters, Vol. 109, 85-92, 2023.
doi:10.2528/PIERL22122604
References

1. Haskou, A., A. Sharaiha, S. Collardey, and , "Design of small parasitic loaded superdirective end-fire antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5456-5464, 2015.
doi:10.1109/TAP.2015.2496112

2. Lin, W. and R. W. Ziolkowski, "Electrically small, low-profile, huygens circularly polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 636-643, 2017.
doi:10.1109/TAP.2017.2784432

3. Podilchak, S. K., A. P. Freundrofer, and Y. M. M. Antar, "Planar antenna for directive beam steering at end-fire using an array of surface-wave launchers," Electronic Letter, Vol. 45, No. 9, 444-445, 2009.
doi:10.1049/el.2009.3455

4. Juan, Y., W. Q. Che, Z. N. Chen, and W. Yang, "A longitudinally compact Yagi-Uda antenna with a parasitic interdigital strip," IEEE Antennas Wireless Propagation Letter, Vol. 16, 2618-2621, 2017.
doi:10.1109/LAWP.2017.2736245

5. Yeo, J. and J. I. Lee, "Bandwidth enhancement of double-dipole quasi-yagi antenna using stepped slot-line structure," IEEE Antennas Wireless Propagation Letter, Vol. 15, 694-697, 2016.
doi:10.1109/LAWP.2015.2469677

6. Kaneda, N., W. R. Deal, Y. Qian, et al. "A broadband planar quasi-Yagi antenna," IEEE Transactions on Antennas Propagation, Vol. 50, No. 8, 1158-1160, 2002.
doi:10.1109/TAP.2002.801299

7. Li, Y., H. Xu, W. Wu, et al. "A non-balancing end-fire microstrip dipole with periodic-offset DSPSL substrate," IEEE Transactions on Antennas Propagation, Vol. 65, No. 5, 2661-2665, 2017.
doi:10.1109/TAP.2017.2682227

8. Boyuan, M., J. Pan, S. D. Huang, et al. "Unidirectional dielectric resonator antennas employing electric and magnetic dipole moments," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6918-6923, 2021.
doi:10.1109/TAP.2021.3069556

9. Guo, L., K. W. Leung, and Y. M. Pan, "Compact unidirectional ringdielectric resonator antennas with lateral radiation," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5334-5342, 2015.
doi:10.1109/TAP.2015.2493579

10. Ouyang, J., Y. M. Pan, and S. Y. Zheng, "Center-fed unilateral and pattern reconfigurable planar antennas with slotted ground plane," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5139-5149, 2018.
doi:10.1109/TAP.2018.2860046

11. Zeng, J. and K. M. Luk, "Wideband millimeter-wave end-fire magnetoelectric dipole antenna with microstrip-line feed," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2658-2665, 2020.
doi:10.1109/TAP.2019.2957089

12. Tang, M. C., B. Zhou, and R. W. Ziolkowski, "Low-profile, electrically small, huygens source antenna with pattern-reconfigurability that covers the entire azimuthal plane," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 99, 1063-1072, 2017.
doi:10.1109/TAP.2016.2647712

13. Sun, K., Y. W. Zhao, Y. P. Chen, et al. "Improved HM-SIW cavity-cascaded array with high front-to-back ratio based on complementary element," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6821-6825, 2020.
doi:10.1109/TAP.2020.2982501

14. Yang, H. Q., M. You, W.-J. Lu, et al. "Envisioning an end-fire circularly polarized antenna: Presenting a planar antenna with a wide beamwidth and enhanced front-to-back ratio," IEEE Antennas Propagation Magazine, Vol. 60, No. 4, 70-79, 2018.
doi:10.1109/MAP.2018.2839964

15. Wu, Z., M. C. Tang, M. Li, and R. W. Ziolkowski, "Ultralow-profile, electrically small, pattern-reconfigurable metamaterial inspired huygens dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1238-1248, 2020.
doi:10.1109/TAP.2019.2925280

16. Hu, P. F., Y. M. Pan, S. Zheng, and B. J. Hu, "The design of miniaturized planar endfire antenna with enhanced front-to-back ratio," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 7190-7195, 2020.
doi:10.1109/TAP.2020.2977816

17. Wang, L., Y.-C. Jiao, and Z. Weng, "Novel dual-band circularly polarized planar endfire antenna with enhanced front-to-back ratios," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 2, 969-976, 2022.
doi:10.1109/TAP.2021.3111160

18. Yin, J. Y. and L. Zhang, "Design of a dual-polarized magnetoelectric dipole antenna with gain improvement at low elevation angle for a base station," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 756-760, 2020.
doi:10.1109/LAWP.2020.2979343

19. Best, S. R., "Progress in the design and realization of an electrically small Huygens source," 2010 International Workshop on Antenna Technology (iWAT), 2010.

20. Alitalo, P., A. O. Karilainen, T. Niemi, C. R. Simovski, et al. "A linearly polarized huygens source formed by two omega particles," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 2302-2305, 2011.

21. Chlavin, A., "A new antenna feed having equal E- and H-plane patterns," Transactions of the IRE Professional Group on Antennas and Propagation, Vol. 2, No. 3, 113-119, 1954.
doi:10.1109/T-AP.1954.27983

22. Chan, P. W., H. Wong, and E. K. N. Yung, "Unidirectional antenna composed of dipole and loop," Electronics Letters, Vol. 43, No. 22, 1176-1178, 2007.
doi:10.1049/el:20071980

23. Li, Z. R., L. D. Tan, X. L. Kang, J. X. Su, et al. "A novel wideband end-fire conformal antenna array mounted on a dielectric cone," Applied Computational Electromagnetics Society Journal, Vol. 31, No. 8, 933-942, 2016.

24. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, New York, 2005.