Vol. 116
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-04-04
Three-Dimensional Near-Field Pattern Shaping Antenna Array with Arbitrary Focus Configuration
By
Progress In Electromagnetics Research M, Vol. 116, 65-75, 2023
Abstract
In this paper, a 24-element microstrip antenna array with three-dimensional near-field pattern shaping capability for microwave hyperthermia is presented. The antenna array operating at 2.45 GHz is designed based on the weighted constrained method of the maximum power transmission efficiency (WCMMPTE). By setting proper constraints for the electric field distribution of several selected points within the target area, the three-dimensional (3D) shape of the electric field can be characterized, meanwhile ensuring that the power is maximally concentrated in this area. Moreover, the shape, size, and spatial location of the three-dimensional area are all adjustable according to the selection of those specific points, making the array quickly adaptable for different actual requirements. The electric field distribution of the preset 3D shape can be focused at center or off-center with optimized excitations fed into the array. The measured electric field distribution shows that the transmitting array antenna is able to achieve a preset 3D shape of the electric field distribution as well as a preset offset position in the desired direction, agreeing very well with the simulations.
Citation
Qiaojiang Xia, Xiao Cai, Zhu Duan, and Wen Geyi, "Three-Dimensional Near-Field Pattern Shaping Antenna Array with Arbitrary Focus Configuration," Progress In Electromagnetics Research M, Vol. 116, 65-75, 2023.
doi:10.2528/PIERM23011204
References

1. Yang, X., W. Geyi, and H. Sun, "Optimum design of wireless power transmission system using microstrip patch antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1824-1827, 2017.

2. Cai, X., X. Gu, and W. Geyi, "Optimal design of antenna arrays focused on multiple targets," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4593-4603, Jun. 2020.
doi:10.1109/TAP.2020.2972311

3. Buffi, A., A. A. Serra, P. Nepa, H.-T. Chou, and G. Manara, "A focused planar microstrip array for 2.4 GHz RFID READERS," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1536-1544, May 2010.
doi:10.1109/TAP.2010.2044331

4. Tanter, M., J.-L. Thomas, and M. Fink, "Focusing through skull with time reversal mirrors. Application to hyperthermia," IEEE Ultrasonics Symposium, Proceedings, Vol. 2, 1289-1293, 1996.

5. Stang, J., M. Haynes, P. Carson, and M. Moghaddam, "A preclinical system prototype for focused microwave thermal therapy of the breast," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 9, 2431-2438, Sep. 2012.
doi:10.1109/TBME.2012.2199492

6. Tofigh, F., J. Nourinia, M. Azarmanesh, and K. M. Khazaei, "Near-field focused array microstrip planar antenna for medical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 951-954, 2014.
doi:10.1109/LAWP.2014.2322111

7. Nguyen, P. T., A. Abbosh, and S. Crozier, "Three-dimensional microwave hyperthermia for breast cancer treatment in a realistic environment using particle swarm optimization," IEEE Transactions on Biomedical Engineering, Vol. 64, No. 6, 1335-1344, Jun. 2017.
doi:10.1109/TBME.2016.2602233

8. He, X., W. Geyi, and S. Wang, "Optimal design of focused arrays for microwave-induced hyperthermia," IET Microwaves, Antennas & Propagation, Vol. 9, No. 14, 1605-1611, Nov. 2015.
doi:10.1049/iet-map.2014.0696

9. He, X., W. Geyi, and S. Wang, "A hexagonal focused array for microwave hyperthermia: Optimal design and experiment," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 56-59, 2016.
doi:10.1109/LAWP.2015.2429596

10. Fink, M., "Time reversal of ultrasonic fields. I. Basic principles," IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, Vol. 39, No. 5, 555-566, Sept. 1992.
doi:10.1109/58.156174

11. Iero, D. A. M., L. Crocco, and T. Isernia, "Thermal and microwave constrained focusing for patient-specific breast cancer hyperthermia: A robustness assessment," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 814-821, Feb. 2014.
doi:10.1109/TAP.2013.2293336

12. Nguyen, P. T., A. Abbosh, and S. Crozier, "Three-dimensional microwave hyperthermia for breast cancer treatment in a realistic environment using particle swarm optimization," IEEE Transactions on Biomedical Engineering, Vol. 64, No. 6, 1335-1344, Jun. 2017.
doi:10.1109/TBME.2016.2602233

13. Buffi, A., P. Nepa, and G. Manara, "Design criteria for near-field-focused planar arrays," IEEE Antennas and Propagation Magazine, Vol. 54, No. 1, 40-50, Feb. 2012.
doi:10.1109/MAP.2012.6202511

14. Blanco, D., J. L. Gómez-Tornero, E. Rajo-Iglesias, and N. Llombart, "Radially polarized annular-slot leaky-wave antenna for three-dimensional near-field microwave focusing," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 583-586, 2014.
doi:10.1109/LAWP.2014.2311854

15. Chou, H.-T., M. R. Pino, P. Nepa, and C.-Y. Liu, "Near-field focused subarrays in a multi-panel configuration," IEEE Access, Vol. 7, 143097-143108, 2019.
doi:10.1109/ACCESS.2019.2944054

16. Zhao, D. and M. Zhu, "Generating microwave spatial fields with arbitrary patterns," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1739-1742, 2016.
doi:10.1109/LAWP.2016.2530825

17. Bellizzi, G. G., D. A. M. Iero, L. Crocco, and T. Isernia, "Three-dimensional field intensity shaping: The scalar case," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 360-363, Mar. 2018.
doi:10.1109/LAWP.2017.2746801

18. Geyi, W., "The method of maximum power transmission efficiency for the design of antenna arrays," IEEE Open Journal of Antennas and Propagation, Vol. 2, 412-430, 2021.
doi:10.1109/OJAP.2021.3066310

19. Cai, X. and W. Geyi, "An optimization method for the synthesis of flat-top radiation patterns in the near- and far-field regions," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 980-987, Feb. 2019.
doi:10.1109/TAP.2018.2882653