Vol. 116
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-04-17
A Local Two-Port Interferometer to Detect Radio-Vortices at 30 GHz
By
Progress In Electromagnetics Research M, Vol. 116, 119-128, 2023
Abstract
In this work we show a novel method based on a local two-port interferometer to distinguish the topological charge of radio-vortices at 30 GHz by using a small portion of the entire wavefront only. The experimental investigation of the amplitude and phase properties of the interference pattern with a pure Gaussian beam (l = 0) and a l = 1 radio vortex is carried out, and results are compared with the theory based on Laguerre-Gauss modes. Experiments were performed both with the interferometer and with single antenna to highlight the effective benefits of the interferometric approach, sensitive to the azimuthal phase of the vortex field. Method is also extendable at higher topological charges for applications to high-density millimetric communications.
Citation
Lorenzo Scalcinati, Bruno Paroli, Mario Zannoni, Massimo Gervasi, and Marco Alberto Carlo Potenza, "A Local Two-Port Interferometer to Detect Radio-Vortices at 30 GHz ," Progress In Electromagnetics Research M, Vol. 116, 119-128, 2023.
doi:10.2528/PIERM23011305
References

1. Coullet, P., L. Gil, and F. Rocca, "Optical vortices," Opt. Commun., Vol. 73, 403-408, 1989.
doi:10.1016/0030-4018(89)90180-6

2. Brambilla, M., L. A. Lugiato, V. Penna, F. Prati, C. Tamm, and C. O. Weiss, "Transverse laser patterns. II. Variational principle for pattern selection, spatial multistability, and laser hydrodynamics," Phys. Rev. A, Vol. 43, 5114, 1991.
doi:10.1103/PhysRevA.43.5114

3. Bazhenov, V. Yu., M. V. Vasnetsov, and M. S. Soskin, "Laser beams with screw dislocations in the wavefronts," Pis'ma Zh. Eksp. Teor. Fiz., Vol. 52, 1037-1039, 1990.

4. Bazhenov, V. Yu., M. S. Soskin, and M. V. Vasnetsov, "Screw dislocations in light wavefronts," J. Mod. Optics, Vol. 39, 985-990, 1992.
doi:10.1080/09500349214551011

5. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A, Vol. 45, 8185, 1992.
doi:10.1103/PhysRevA.45.8185

6. Willner, A. E., K. Panga, H. Song, K. Zou, and H. Zhou, "Orbital angular momentum of light for communications," Appl. Phys. Rev., Vol. 8, 041312, 2021.
doi:10.1063/5.0054885

7. Willner, A. E., Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, "Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing," Philos. Trans. A Math. Phy. Eng. Sci., Vol. 375, 20150439, 2017.

8. Cozzolino, D., D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, "Orbital angular momentum states enabling fiber-based high-dimensional quantum communication," Phys. Rev. App., Vol. 11, 064058, 2019.
doi:10.1103/PhysRevApplied.11.064058

9. Wang, J., S. Chen, and J. Liu, "Orbital angular momentum communications based on standard multi-mode fiber," APL Photonics, Vol. 6, 060804, 2021.
doi:10.1063/5.0049022

10. Ren, Y., L. Li, Z. Wang, et al. "Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications," Sci. Rep., Vol. 6, 33306, 2016.
doi:10.1038/srep33306

11. Yan, Y., G. Xie, M. Lavery, et al. "High-capacity millimetre-wave communications with orbital angular momentum multiplexing," Nat. Commun., Vol. 5, 4876, 2014.
doi:10.1038/ncomms5876

12. Hui, X., S. Zheng, Y. Chen, et al. "Multiplexed millimeter wave communication with dual Orbital Angular Momentum (OAM) mode antennas," Sci. Rep., Vol. 5, 10148, 2015.
doi:10.1038/srep10148

13. Allen, B., D. Simmons, T. D. Drysdale, and J. Coon, "Performance analysis of an orbital angular momentum multiplexed amplify-and-forward radio relay chain with inter-modal crosstalk," R. Soc. Open Sci., Vol. 6, 181063, 2019.
doi:10.1098/rsos.181063

14. Assimonis, S. D., M. A. B. Abbasi, and V. Fusco, "Millimeter-wave multi-mode circular antenna array for uni-cast multi-cast and OAM communication," Sci. Rep., Vol. 11, 4928, 2021.
doi:10.1038/s41598-021-83301-1

15. Mirhosseini, M., M. Malik, Z. Shi, and R. W. Boyd, "Efficient separation of the orbital angular momentum eigenstates of light," Nat. Commun., Vol. 4, 2781, 2013.
doi:10.1038/ncomms3781

16. Li, C. and S. Zhao, "Efficient separating orbital angular momentum mode with radial varying phase," Opt. Express, Vol. 5, 267-270, 2017.

17. Berkhout, G. C. G., M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, "Efficient sorting of orbital angular momentum states of light," Phys. Rev. Lett., Vol. 105, 153601, 2010.
doi:10.1103/PhysRevLett.105.153601

18. Paroli, B., A. Cirella, I. Drebot, V. Petrillo, M. Siano, and M. A. C. Potenza, "Asymmetric lateral coherence of OAM radiation reveals topological charge and local curvature," Journal of Optics, Vol. 20, 1-10, 2018.
doi:10.1088/2040-8986/aac936

19. Paroli, B., M. Siano, and M. A. C. Potenza, "The local intrinsic curvature of wavefronts allows to detect optical vortices," Opt. Express, Vol. 27, 17550, 2019.
doi:10.1364/OE.27.017550

20. Scalcinati, L., B. Paroli, M. Zannoni, and M. A. C. Potenza, "Measurement of the local intrinsic curvature of a l = 1 radio-vortex at 30 GHz," Progress In Electromagnetic Research M, Vol. 94, 1-8, 2020.
doi:10.2528/PIERM20041407

21. Paroli, B., M. Siano, and M. A. C. Potenza, "Measuring the topological charge of orbital angular momentum radiation in single-shot by means of wavefront intrinsic curvature," Appl. Opt., Vol. 59, 5258, 2020.
doi:10.1364/AO.392341

22. Paroli, B., M. Siano, and M. A. C. Potenza, "A composite beam of radiation with orbital angular momentum allows effective local, single-shot measurement of topological charge," Opt. Commun., Vol. 459, 2020.
doi:10.1016/j.optcom.2019.125049

23. Paroli, B., M. Siano, and M. A. C. Potenza, "Dense-code free space transmission by local demultiplexing optical states of a composed vortex," Opt. Express, Vol. 29, 14412-14424, 2021.
doi:10.1364/OE.417772

24. Koksal, K., M. Babiker, V. E. Lembessis, and J. Yuan, "Chirality and helicity of linearly-polarised Laguerre-Gaussian beams of small beam waists," Opt. Commun., Vol. 490, 126907, 2021.
doi:10.1016/j.optcom.2021.126907