Vol. 110
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-04-01
A Terahertz Low Scan Loss High Gain Beam Steering Transmitarray
By
Progress In Electromagnetics Research Letters, Vol. 110, 29-36, 2023
Abstract
This paper presents a terahertz high gain beam steering transmitarray antenna (BSTA) working at 340 GHz. Substrateless double hexagon ring slots unit-cells which present low loss characteristics at THz band are used to constitute the layout of THz BSTA. To improve the beam steering performance, bifocal technique is used to design the layout of BSTA. Because the fabrication risk of the THz BSTA prototype increases a lot as the aperture dimension is enlarged, four inch silicon wafer is chosen after weighting the risk and gain of the BSTA. Micromachining process is used to fabricate the large aperture THz BSTA to ensure the machining accuracy of the unit-cells. The measured results of the prototype show that the THz BSTA could realize -15°~15° range beam scanning with gain > 38.3 dB, scanning loss < 1.2 dB and side lobe level < -17.8 dB, by moving the feed along the focal plane of the BSTA.
Citation
Guang Liu, Zhenzhan Wang, Haowen Xu, Min Yi, and Haotian Zhu, "A Terahertz Low Scan Loss High Gain Beam Steering Transmitarray," Progress In Electromagnetics Research Letters, Vol. 110, 29-36, 2023.
doi:10.2528/PIERL23012802
References

1. Chattopadhyay, G., "Terahertz antennas and systems for space borne platforms," Proc. 4th Eur. Conf. Antennas Propag., 1-7, Barcelona, 2010.

2. Liu, F., W. Z. Cui, Z. B. Zhu, S. W. Dong, S. Shang, and Z. S. Yao, "The spaceborne terahertz remote sensing techniques," IET International Radar Conference 2013, 1-5, Xi'an, 2013.

3. Read, W. G., Z. Shippony, M. J. Schwartz, and W. V. Snyder, "The clear-sky unpolarized forward model for the EOS aura microwave limb sounder (MLS)," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 5, 1367-1379, May 2006.
doi:10.1109/TGRS.2006.873233

4. Abdelrahman, A. H., F. Yang, A. Z. Elsherbeni, and P. Nayeri, "Analysis and design of transmitarray antennas," Synthesis Lectures on Antennas, Vol. 6, No. I, 1-175, 2017.

5. Kaouach, H., L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, "Wideband low-loss linear and circular polarization transmit-arrays in V-band," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2513-2523, Jul. 2011.
doi:10.1109/TAP.2011.2152331

6. Pham, K. T., G. Liu, D. G. Ovejero, and R. Sauleau, "Dual-band transmitarray with low scan loss for satcom applications," IEEE Trans. Antennas Propag., Vol. 69, No. 3, 1775-1780, Mar. 2021.
doi:10.1109/TAP.2020.3031410

7. Qu, S. W., H. Yi, B. J. Chen, K. B. Ng, and C. H. Chan, "Terahertz reflecting and transmitting metasurfaces," Proc. IEEE, Vol. 105, No. 6, 1166-1184, Jun. 2017.
doi:10.1109/JPROC.2017.2688319

8. Qu, S. W. and H. Yi, "Low-cost two-layer terahertz transmitarray," 2017 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, Suzhou, 2017.

9. Yi, H., K. B. Ng, C. K. Wong, S. W. Qu, and C. H. Chan, "A low-cost satellite-to-satellite link using meta-lens," 12th Eur. Conf. Antennas Propag., London, UK, Apr. 9-13, 2018.

10. Qu, S. W., P.-Y. Feng, H. Yi, et al. "Terahertz reflectarray and transmitarray," 2016 International Symposium on Antennas and Propagation (ISAP), 548-549, Okinawa, Japan, 2016.

11. Miao, Z., Z.-C. Hao, G. Q. Luo, et al., "140 GHz high-gain LTCC-integrated transmit-array antenna using a wideband SIW aperture-coupling phase delay structure," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 182-190, Jan. 2018.
doi:10.1109/TAP.2017.2776345

12. Foglia Manzillo, F., A. Clemente, and J. L. Gonzalez-Jimenez, "High-gain D-band transmitarrays in standard PCB technology for beyond-5G communications," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 587-592, Jan. 2020.
doi:10.1109/TAP.2019.2938630

13. Liu, G., H. Wang, J. Jiang, and F. Xue, "Terahertz substrateless transmitarray antenna design and microfabrication," Microw. Opt. Technol. Lett., Vol. 58, No. 9, 2096-2100, Sep. 2016.
doi:10.1002/mop.29985

14. Koutsos, O., F. F. Manzillo, A. Clemente, and R. Sauleau, "Analysis, rigorous design, and characterization of a three-layer anisotropic transmitarray at 300 GHz," IEEE Trans. Antennas Propag., Vol. 70, No. 7, 5437-5446, Jul. 2022.
doi:10.1109/TAP.2022.3145506

15. Pan, X., F. Yang, S. Xu, and M. Li, "Review of W-band reconfigurable reflectarray and transmitarray antennas at Tsinghua University," 14th Eur. Conf. Antennas Propag., Copenhagen, Denmark, 2020.

16. Pan, X., S. Wang, G. Li, S. Xu, and F. Yang, "On-chip reconfigurable reflectarray for 2-D beam-steering at W-band," 2018 IEEE MTT-S International Wireless Symposium (IWS), 1-4, Chengdu, 2018.

17. Pham, K., N. T. Nguyen, A. Clemente, L. Di Palma, L. Le Coq, L. Dussopt, and R. Sauleau, "Design of wideband dual linearly-polarized transmitarray antennas," IEEE Trans. Antennas Propag., Vol. 64, No. 5, 2022-2026, May 2016.
doi:10.1109/TAP.2016.2536160

18. Lima, E. B., S. A. Matos, J. R. Costa, C. A. Fernandes, and N. J. G. Fonseca, "Circular polarization wide-angle beam steering at Ka-band by in-plane translation of a plate lens antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5443-5455, Dec. 2015.
doi:10.1109/TAP.2015.2484419

19. Matos, S. A., E. B. Lima, J. R. Costa, C. A. Fernandes, and N. J. G. Fonseca, "Design of a 40 dBi planar bifocal lens for mechanical beam steering at Ka-band," 10th Eur. Conf. Antennas Propag., Davos, Switzerland, 2016.

20. Liu, G., Z. Wang, and H. Wang, "Low loss multi-beam terahertz transmitarray antenna for remote sensing," 2019 PhotonIcs & Electromagnetics Research Symposium --- Fall (PIERS --- FALL), Xiamen, China, Dec. 17-20, 2019.

21. Liu, G., E. M. Cruz, K. Pham, D. G. Ovejero, and R. Sauleau, "Low scan loss bifocal Ka-band transparent transmitarray antenna," IEEE Int. Symp. Antennas Propag. (APS/URSI), 1449-1450, Boston, MA, USA, 2018.

22. Heymann, M., S. Fraden, and D. Kim, "Multi-height precision alignment with selectively developed alignment marks," Journal of Microelectromechanical Systems, Vol. 23, No. 2, 424-427, Apr. 2014.
doi:10.1109/JMEMS.2013.2279231

23. Abdelrahman, A. H., A. Z. Elsherbeni, and F. Yang, "High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements," IEEE Antennas Wireless Propag. Lett., Vol. 13, 2014.